Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 477(2): 396-403, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18590695

RESUMEN

For decades, the binding of prostaglandin H(2) (PGH(2)) to multiple target proteins of unrelated protein structures which mediate diverse biological functions has remained a real mystery in the field of eicosanoid biology. Here, we report that the structure of a PGH(2) mimic, U46619, bound to the purified human TP, was determined and compared with that of its conformation bound to the COX-downstream synthases, prostacyclin synthase (PGIS) and thromboxane A(2) synthase (TXAS). Active human TP protein, glycosylated and in full length, was expressed in Sf-9 cells using a baculovirus (BV) expression system and then purified to near homogeneity. The binding of U46619 to the purified receptor in a nonionic detergent-mimicked lipid environment was characterized by high-resolution NMR spectroscopy. The conformational change of U46619, upon binding to the active TP, was evidenced by the significant perturbation of the chemical shifts of its protons at H3 and H4 in a concentration-dependent manner. The detailed conformational changes and 3D structure of U46619 from the free form to the TP-bound form were further solved by 2D (1)H NMR experiments using a transferred NOE (trNOE) technique. The distances between the protons of H11 and H18, H11 and H19, H15 and H18, and H15 and H19 in U46619 were shorter following their binding to the TP in solution, down to within 5A, which were different than that of the U46619 bound to PGIS and U44069 (another PGH(2) mimic) bound to TXAS. These shorter distances led to further separation of the U46619 alpha and omega chains, forming a unique "rectangular" shape. This enabled the molecule to fit into the ligand-binding site pocket of a TP model, in which homology modeling was used for the transmembrane (TM) domain, and NMR structures were used for the extramembrane loops. The proton perturbations and 3D conformations in the TP-bound U46619 were different with that of the PGH(2) mimics bound to PGIS and TXAS. The studies indicated that PGH(2) can adopt multiple conformations in solution to satisfy the specific and unique shapes to fit the different binding pockets in the TP receptor and COX-downstream enzymes. The results also provided sufficient information for speculating the molecular basis of how PGH(2) binds to multiple target proteins even though unrelated in their protein sequences.


Asunto(s)
Imitación Molecular , Prostaglandina H2/química , Receptores de Tromboxano A2 y Prostaglandina H2/química , Receptores de Tromboxano A2 y Prostaglandina H2/ultraestructura , Sitios de Unión , Humanos , Unión Proteica , Conformación Proteica , Soluciones
2.
Arch Biochem Biophys ; 470(1): 73-82, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18073117

RESUMEN

It has been reported that the multiple intracellular loops (iLPs) of the thromboxane A(2) receptor (TP) are involved in the receptor G protein coupling. In this study, a high-resolution 2D NMR technique was used to determine the 3D structures of the first, second, and third iLPs of the TP using synthetic peptides constrained into the loop structures. 2D (1)H NMR spectra, TOCSY and NOESY were obtained for the two peptides from proton NMR experiments. The NMR data was processed and assigned through the Felix 2000 program. Standard methods were used to acquire sequence-specific assignments. Structure calculations were processed through DGII and NMR refinement programs within the Insight II program. We were able to calculate and use the NOE constraints to obtain the superimposed structure of 10 structures for each iLP peptide. The NMR-determined structures of the iLP peptides were used to refine a homology model of the TP. A 3D G-protein-binding cavity, formed by the three intracellular loops, was predicted by the docking of the C-terminal domain of the Galphaq. Based on the structural model and the previous mutagenesis studies, the residues, R130, R60, C223, F138, L360, V361, E358 and Y359, which are important for interaction with the G protein, were further highlighted. These results reveal the possibly important molecular mechanisms in TP signaling and provide structural information to characterize other prostanoid receptor signalings.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Tromboxano A2 y Prostaglandina H2/química , Receptores de Tromboxano A2 y Prostaglandina H2/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalografía/métodos , Humanos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA