Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Sci Food Agric ; 104(6): 3719-3728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160249

RESUMEN

BACKGROUND: Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS: Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION: Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Resistencia a la Insulina , Femenino , Porcinos , Animales , Masculino , Humanos , Resveratrol/farmacología , Resveratrol/metabolismo , Hígado/metabolismo , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Desarrollo de Músculos
2.
Anim Biotechnol ; 34(9): 4900-4909, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37149789

RESUMEN

Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.


Asunto(s)
Antioxidantes , Ácidos Cumáricos , Enfermedades de los Porcinos , Femenino , Animales , Porcinos , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Metabolismo de los Lípidos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Hígado , Suplementos Dietéticos , ARN Mensajero/metabolismo
3.
J Med Primatol ; 51(6): 329-344, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35855511

RESUMEN

BACKGROUND: Poor nutrition during fetal development programs postnatal kidney function. Understanding postnatal consequences in nonhuman primates (NHP) is important for translation to our understanding the impact on human kidney function and disease risk. We hypothesized that intrauterine growth restriction (IUGR) in NHP persists postnatally, with potential molecular mechanisms revealed by Western-type diet challenge. METHODS: IUGR juvenile baboons were fed a 7-week Western diet, with kidney biopsies, blood, and urine collected before and after challenge. Transcriptomics and metabolomics were used to analyze biosamples. RESULTS: Pre-challenge IUGR kidney transcriptome and urine metabolome differed from controls. Post-challenge, sex and diet-specific responses in urine metabolite and renal signaling pathways were observed. Dysregulated mTOR signaling persisted postnatally in female pre-challenge. Post-challenge IUGR male response showed uncoordinated signaling suggesting proximal tubule injury. CONCLUSION: Fetal undernutrition impacts juvenile offspring kidneys at the molecular level suggesting early-onset blood pressure dysregulation.


Asunto(s)
Retardo del Crecimiento Fetal , Riñón , Humanos , Animales , Femenino , Masculino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/veterinaria , Riñón/patología , Papio , Presión Sanguínea
4.
Arch Anim Nutr ; 74(6): 462-475, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33076701

RESUMEN

Intrauterine growth restriction (IUGR) results in abnormal morphology and gastrointestinal function, such as reduced villi height and crypt depth, thinner mucosa and muscle layers, and reduced brush border enzyme activities, delayed gastric emptying, increased stress response. As a gastrointestinal growth factor, the manner by which the porcine glucagon-like peptide-2 (pGLP-2) microsphere administration restored the gastrointestinal function and growth performance of IUGR piglets was investigated. Fourteen newborn Duroc × (Yorkshire × Landrace) IUGR piglets (0.92 ± 0.113 kg) were assigned into the IUGR (negative control group) and pGLP-2 microsphere groups. The piglets in group pGLP-2 were intraperitoneally administered with 100 mg pGLP-2 microspheres on day 1 after birth. From days 15 to 26 of trial, the body weight of the pGLP-2 group was significantly higher than that of the control. IUGR piglets of group pGLP-2 showed a significantly increased pancreas weight, serum insulin content and activity of lipase and amylase. Injection of pGLP-2 microspheres restored the intestinal absorptive capacity by significantly increasing the mRNA expression of the sodium-glucose cotransporter 1 in the jejunum and the peptide transporter 1 in the jejunum. It also restored the redox balance by increasing the catalase mRNA expression and decreasing the heat shock protein 70 mRNA expression. In addition, this improvement was associated with the significant increase in gut diameter, length and weight. Therefore, it was concluded that the injection of pGLP-2 microspheres was a suitable therapeutic strategy for compensatory growth in low birth weight IUGR piglets.


Asunto(s)
Retardo del Crecimiento Fetal/veterinaria , Péptido 2 Similar al Glucagón/administración & dosificación , Intestinos/fisiología , Páncreas/fisiología , Sus scrofa/crecimiento & desarrollo , Enfermedades de los Porcinos/metabolismo , Alimentación Animal/análisis , Animales , Animales Recién Nacidos/fisiología , Dieta/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Microesferas , Porcinos
5.
Biol Reprod ; 101(1): 112-125, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31093645

RESUMEN

It is hypothesized that growth restriction occurs due to inadequate vascularization of the feto-maternal interface. Evidence exists for sexual dimorphism in placental function although associations between fetal sex and the endometrium remain poorly investigated. This study investigated the relationship between porcine fetal size, sex and endometrial angiogenesis at multiple gestational days (GD). Endometrial samples supplying the lightest and closest to mean litter weight (CTMLW), male and female Large White X Landrace conceptuses or fetuses were obtained at GD18, 30, 45, 60, and 90 (n = 5-9 litters/GD). Immunohistochemistry for CD31 revealed a greater number of blood vessels in endometrium supplying females compared to those supplying males at GD45. Endometrial samples supplying the lightest fetuses had fewer blood vessels (GD60) and uterine glands (GD90) compared to those supplying the CTMLW fetuses. Quantitative PCR revealed decreased CD31 (GD60), HPSE and VEGFA (GD90) expression, alongside increased HIF1A (GD45) expression in endometrial samples supplying the lightest compared to the CTMLW fetuses. At GD30, PTGFR, CD31, and VEGFA mRNA expression was increased in samples supplying female fetuses compared to those supplying male fetuses. Intriguingly, decreased expression of ACP5, CD31, HIF1A, and VEGFA mRNAs was observed at GD60 in endometrial samples supplying female fetuses compared to those supplying their male littermates. Endothelial cell branching assays demonstrated impaired endothelial cell branching in response to conditioned media from endometrial samples supplying the lightest and female fetuses compared with the CTMLW and male fetuses, respectively. This study has highlighted that endometrial tissues supplying the lightest and female fetuses have impaired angiogenesis when compared with the CTMLW and female fetuses respectively. Importantly, the relationship between fetal size, sex and endometrial vascularity is dynamic and dependent upon the GD investigated.


Asunto(s)
Endometrio/irrigación sanguínea , Peso Fetal/fisiología , Feto/fisiología , Neovascularización Fisiológica/fisiología , Porcinos/fisiología , Animales , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/veterinaria , Regulación del Desarrollo de la Expresión Génica , Masculino , Placenta/irrigación sanguínea , Placentación/fisiología , Embarazo , Caracteres Sexuales
6.
J Appl Microbiol ; 127(2): 354-369, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31077497

RESUMEN

AIM: Intrauterine growth retardation (IUGR) is a prevalent problem in mammals. The present study was conducted to unveil the alterations in intestinal microbiota in IUGR piglets. METHODS AND RESULTS: We identified the alterations of small intestinal microbiota in IUGR piglets on 7, 21 and 28 days of age using 16S rRNA sequencing. The results showed that IUGR piglets had a decreased alpha diversity of jejunum microbiota at 7 and 21 days of age; had lower abundances of Bacteroidetes and Bacteroides in the jejunum at 7, 21 and 28 days of age, Oscillibacter in the jejunum at 21 days of age, and Firmicutes in the ileum at 21 days of age; whereas they had higher abundances of Proteobacteria and Pasteurella in the ileum at 21 days of age and Escherichia-Shigella in the jejunum at 28 days of age. Correlation analysis showed that Bacteroides, Oscillibacter and Ruminococcaceae_UCG-002 compositions were positively associated with the body weight (BW) of IUGR piglets, nevertheless Proteobacteria and Escherichia-Shigella relative abundances were negatively correlated with the BW of IUGR piglets. Gene function prediction analysis indicated that microbiota-associated carbohydrate metabolism, lipid metabolism, glycan biosynthesis and metabolism, amino acid metabolism, and xenobiotics biodegradation and metabolism were downregulated in the IUGR piglets compared to control piglets. CONCLUSIONS: The present study profiled the intestinal microbiota of newborn piglets with IUGR and the newborn IUGR piglets have lower diversity and different taxonomic abundances. Alterations in the abundances of Bacteroidetes, Bacteroides, Proteobacteria Escherichia-Shigella and Pasteurella may be involved in nutrient digestion and absorption, as well as the potential mechanisms connecting to the growth and development of IUGR in mammals. SIGNIFICANCE AND IMPACT OF THE STUDY: The small intestinal microbiota were highly shaped in the IUGR piglets, which might further mediate the growth and development of IUGR piglets; and the gut microbiota could serve as a potential target for IUGR treatment.


Asunto(s)
Retardo del Crecimiento Fetal/veterinaria , Microbioma Gastrointestinal , Enfermedades de los Porcinos/microbiología , Animales , Animales Recién Nacidos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Peso Corporal , Retardo del Crecimiento Fetal/microbiología , Íleon/microbiología , Yeyuno/microbiología , ARN Ribosómico 16S/genética , Porcinos
7.
Anim Genet ; 50(6): 613-620, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31571274

RESUMEN

The review aimed at searching for DNA structure markers of epigenetic modifications leading to intrauterine growth restriction (IUGR) in three livestock species, mouse and human. IUGR affects mammals by harming their wellbeing and the profitability of breeding enterprises. Of the livestock species, we chose cow, pig and sheep owing to there being many reports on the epigenetics of IUGR. IUGR investigations in human and mouse are particularly numerous, as we are interested in our own wellbeing and the mouse is a model species. We decided to focus on five genes (Igf2r, Igf2, H19, Peg3 and Mest) of known IUGR association, reported in all of those species. Despite the abundance of papers on IUGR, naturally occurring mutations responsible for epigenetic modifications have been described only in human and cow. The effect of induced DNA structural modifications upon epigenetics has been described in mouse and pig. One paper regarding mouse was chosen from among those describing DNA modifications performed to obtain parthenogenetic progeny. Papers regarding pig parthenogenetic progeny described the epigenetics of genes involved in foetal development, with no interference with the genome structure. No reports on DNA modifications altering IUGR epigenetics in sheep were found. Only environmental effects were studied and we could not conclude from the experiment designs whether the gene setup could affect the expression of involved genes, as different populations were not included or not specified within particular experiments. Apparently, DNA markers of IUGR epigenetics exist. It has been reported that the small number of them, occurring naturally, may result from neglecting existing evidence of such selection or health status forecasting markers.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/veterinaria , Mutación , Animales , Epigénesis Genética , Humanos , Ganado/embriología , Ganado/genética , Ganado/crecimiento & desarrollo
8.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 868-881, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30941824

RESUMEN

This study investigated the effects of dietary supplementation with L -methionine (L -Met), DL -methionine (DL -Met) and calcium salt of the methionine hydroxyl analog (MHA-Ca) on growth performance, intestinal morphology, antioxidant capacity and immune function in intra-uterine growth-retarded (IUGR) suckling piglets. Six normal birthweight (NBW) female piglets and 24 same-sex IUGR piglets were selected at birth. Piglets were fed nutrient adequate basal diet supplemented with 0.08% L -alanine (NBW-CON), 0.08% L -alanine (IUGR-CON), 0.12% L -Met (IUGR-LM), 0.12% DL -Met (IUGR-DLM) and 0.16% MHA-Ca (IUGR-MHA-Ca) from 7 to 21 days of age respectively (n = 6). The results indicated that IUGR decreased average daily milk (dry matter) intake and average daily gain and increased feed conversion ratio of suckling piglets (p < 0.05). Compared with the NBW-CON piglets, IUGR also impaired villus morphology and reduced antioxidant capacity and immune homeostasis in the intestine of IUGR-CON piglets (p < 0.05). Supplementation with L -Met enhanced jejunal villus height (VH) and villus area and ileal VH of IUGR piglets compared with IUGR-CON piglets (p < 0.05). Similarly, DL -Met supplementation increased VH and the ratio of VH to crypt depth in the jejunum compared with IUGR-CON pigs (p < 0.05). Supplementation with L -Met and DL -Met (0.12%) tended to increase reduced glutathione content and reduced glutathione: oxidized glutathione ratio and decrease protein carbonyl concentration in the jejunum of piglets when compared with the IUGR-CON group (p < 0.10). However, supplementation with MHA-Ca had no effect on the intestinal redox status of IUGR piglets (p > 0.10). In conclusion, supplementation with either L -Met or DL -Met has a beneficial effect on the intestinal morphology and antioxidant capacity of IUGR suckling piglets.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Retardo del Crecimiento Fetal , Intestinos , Metionina , Porcinos , Animales , Femenino , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales Lactantes , Antioxidantes , Dieta/veterinaria , Retardo del Crecimiento Fetal/veterinaria , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Metionina/farmacología , Oxidación-Reducción , Porcinos/crecimiento & desarrollo
9.
Br J Nutr ; 119(7): 734-747, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29569542

RESUMEN

Mammalian neonates undergo rapid transitions from a sterile uterine environment with a continuous intravenous supply of nutrients to a microbe-rich environment with intermittent ingesting of colostrum/milk via the gut. Currently, little is known about the colostrum-induced alterations of intestinal mucosal proteins in piglets with intra-uterine growth restriction (IUGR). In this study, we sought to investigate the innate differences and effects of colostrum on alterations in small-intestinal proteomes of IUGR piglets. Two IUGR (approximately 0·9 kg) and two normal-birth weight (NBW; approximately 1·3 kg) piglets were obtained from each of six sows at birth. One half (n 12; 6 IUGR v. 6 NBW) of the selected newborn piglets were killed to obtain jejunum samples, and the other half (n 12; 6 IUGR v. 6 NBW) of the newborn piglets were allowed to suckle colostrum from their own mothers for 24 h before jejunum sample collection. On the basis of proteomic analysis, we identified thirty-one differentially expressed proteins in the jejunal mucosa between IUGR and normal neonates before or after colostrum consumption. The intestinal proteins altered by colostrum feeding play important roles in the following: (1) increasing intestinal integrity, transport of nutrients, energy metabolism, protein synthesis, immune response and, therefore, cell proliferation; and (2) decreasing oxidative stress, and therefore cell apoptosis, in IUGR neonates. However, colostrum only partially ameliorated the inferior status of the jejunal mucosa in IUGR neonates. These findings provide the first evidence in intestinal protein alterations of IUGR neonates in response to colostrum ingestion, and thus render new insights into the mechanisms responsible for impaired growth in IUGR neonates and into new nutritional intervention strategies.


Asunto(s)
Calostro , Retardo del Crecimiento Fetal/veterinaria , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Enfermedades de los Porcinos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Glucemia , Metabolismo Energético , Femenino , Retardo del Crecimiento Fetal/inmunología , Retardo del Crecimiento Fetal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Yeyuno/efectos de los fármacos , Embarazo , Proteómica , Porcinos , Enfermedades de los Porcinos/inmunología , Transcriptoma
10.
J Med Primatol ; 47(6): 427-429, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29956833

RESUMEN

We investigated menstrual cycles in intrauterine growth restricted (IUGR, 7-10 years, n = 8) and age-matched control (n = 10) baboons. Cycle duration and plasma anti-Mullerian hormone were similar. IUGR spent more days per cycle swollen and had elevated early morning fasted serum cortisol, suggesting normal fertility in the presence of increased psychosocial stress.


Asunto(s)
Fertilidad/fisiología , Retardo del Crecimiento Fetal/veterinaria , Ciclo Menstrual/fisiología , Enfermedades de los Monos/fisiopatología , Enfermedades de los Monos/psicología , Papio , Estrés Psicológico/psicología , Animales , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Papio/fisiología , Estrés Psicológico/fisiopatología
11.
Eur J Nutr ; 57(1): 327-338, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27722780

RESUMEN

PURPOSE: The objective of the present study was to test the hypothesis that N-acetylcysteine (NAC) may play beneficial roles against intrauterine growth retardation (IUGR)-induced hepatic damage in suckling piglets. METHODS: Fourteen IUGR and seven normal birth weight (NBW) neonatal male piglets were selected. Piglets were weaned at 7 days of postnatal age and fed the control formula milk (NBW-CON and IUGR-CON groups) or the control formula milk supplemented with 1.2 g/kg NAC (IUGR-NAC group) for 14 days (n = 7). The plasma and liver samples were analyzed for the parameters related to hepatic damage, redox status, apoptosis, and autophagy. RESULTS: Compared with the NBW-CON group, IUGR-CON group exhibited increased activities of plasma aminotransferases, increased numbers of apoptotic hepatocytes, as well as higher concentrations of protein carbonyl, malondialdehyde (MDA), microtubule-associated protein 1 light chain 3 beta, and phospholipid-conjugated form (MAP1LC3B-II), along with a decrease in the content of reduced glutathione (GSH). NAC treatment increased GSH content and GSH-to-oxidized GSH ratio in the liver of IUGR-NAC group, most likely owing to the improved activities of γ-glutamine-cysteine ligase, γ-glutamine-cysteine synthetase, and glutathione reductase. The hepatic protein carbonyl and MDA contents were decreased in the IUGR-NAC group compared with the IUGR-CON group. In addition, NAC-treated piglets had an increased content of B cell lymphoma/leukemia 2 protein, whereas a decreased expression level of MAP1LC3B-II in the liver. CONCLUSIONS: NAC may have beneficial effects in improving GSH synthesis and cellular homeostasis in the liver of IUGR suckling piglets.


Asunto(s)
Acetilcisteína/administración & dosificación , Animales Lactantes/metabolismo , Retardo del Crecimiento Fetal/veterinaria , Glutatión/biosíntesis , Hepatopatías/prevención & control , Sus scrofa , Alanina Transaminasa/sangre , Animales , Apoptosis , Aspartato Aminotransferasas/sangre , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Expresión Génica , Genes bcl-2/genética , Homeostasis , Hígado/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Malondialdehído/análisis , Necrosis , Oxidación-Reducción
12.
Genet Sel Evol ; 50(1): 46, 2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30227828

RESUMEN

BACKGROUND: In polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR). IUGR poses life-long challenges, both mental, with morphological brain changes and altered cognition, and physical, such as immaturity of organs, reduced colostrum intake and weight gain. In pigs, head morphology of newborn piglets is a good phenotypic marker for identifying such compromised piglets. Growth retardation could be considered as a property of the dam, in part due to either uterine capacity or insufficiency. A novel approach to this issue is to consider the proportion of IUGR-affected piglets in a litter as an indirect measure of uterine capacity. However, uterine capacity or sufficiency cannot be equated solely to litter size and thus is a trait difficult to measure on farm. RESULTS: A total of 21,159 Landrace × Large White or Landrace × White Duroc piglets (born over 52 weeks) with recorded head morphology and birth weights were followed from birth until death or weaning. At the piglet level, the estimated heritability for IUGR (as defined by head morphology) was low at 0.01 ± 0.01. Piglet direct genetic effects of birth weight (h2 = 0.07 ± 0.02) were strongly negatively correlated with head morphology (- 0.93), in that IUGR-affected piglets tended to have lower birth weights. At the sow level, analysis of the proportion of IUGR-affected piglets in a litter gave a heritability of 0.20 ± 0.06, with high and negative genetic correlations of the proportion of IUGR-affected piglets with average offspring birth weight (- 0.90) and with the proportion of piglets surviving until 24 h (- 0.80). CONCLUSIONS: This suggests that the proportion of IUGR-affected piglets in a litter is a suitable indirect measure of uterine capacity for inclusion in breeding programmes that aim at reducing IUGR in piglets and improving piglet survival.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Selección Genética , Selección Artificial , Enfermedades de los Porcinos/genética , Porcinos/genética , Animales , Peso al Nacer , Femenino , Retardo del Crecimiento Fetal/veterinaria , Masculino , Carácter Cuantitativo Heredable , Porcinos/embriología , Útero/fisiología
13.
Biol Reprod ; 97(2): 249-257, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679164

RESUMEN

Intrauterine growth restriction (IUGR) is caused by dysregulation of placental metabolism. Paternally inherited IUGR mutations in the fetus influence maternal physiology via the placenta. However, it is not known whether the maternal placenta also affects the extent of IUGR in such fetuses. In cattle and other ruminants, maternal-fetal communication occurs primarily at the placentomes. We previously identified a 3΄ deletion in the noncoding MER1 repeat containing imprinted transcript 1 (MIMT1) gene that, when inherited from the sire, causes IUGR and late abortion in Ayshire cattle with variable levels of severity. Here, we compared the transcriptome and genomic imprinting in fetal and maternal placentome components of wild-type and MIMT1Del/WT fetuses before IUGR became apparent, to identify key early events. Transcriptome analysis revealed fewer differentially expressed genes in maternal than fetal MIMT1Del/WT placentome. AST1, within the PEG3 domain, was the only gene consistently reduced in IUGR in both fetal and maternal samples. Several genes showed an imprinting pattern associated with IUGR, of which only secernin 3 (SCRN3) and paternally expressed 3 (PEG3) were differentially imprinted in both placentome components. Loss of strictly monoallelic, allele-specific expression (∼80:20) of PEG3 in the maternal MIMT1Del/WT placenta could be associated with incomplete penetrance of MIMT1Del. Our data show that dysregulation of the PEG3 domain is involved in IUGR, but also reveal that maternal placental tissues may affect the penetrance of the paternally inherited IUGR mutation.


Asunto(s)
Enfermedades de los Bovinos/genética , Retardo del Crecimiento Fetal/veterinaria , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Bovinos , Enfermedades de los Bovinos/patología , Metilación de ADN , Femenino , Retardo del Crecimiento Fetal/genética , Predisposición Genética a la Enfermedad , Impresión Genómica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Placenta/metabolismo , Embarazo
14.
Arch Anim Nutr ; 71(2): 93-107, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28118753

RESUMEN

The aim of this study was to investigate the effects of dietary supplementation with 0.35% l-leucine on redox status and gene abundance relating to mitochondrial biogenesis and function in the jejunum of intrauterine growth-retarded (IUGR) piglets during early weaning period. According to a 2 × 2 factorial arrangement, 16 IUGR and 16 normal body weight (NBW) piglets were fed a basal diet without l-leucine supplementation or a basal diet plus 0.35% l-leucine supplementation from the age of 14 to 35 d. The results showed that compared with NBW piglets, IUGR piglets had a lower (p < 0.05) jejunal DNA concentration, a reduced (p < 0.05) manganese superoxide dismutase (MnSOD) and total antioxidant capability (T-AOC) activities and mitochondrial DNA content in the jejunum. Leucine supplementation increased (p < 0.05) MnSOD and T-AOC activities and decreased (p < 0.05) the malondialdehyde content in the jejunum of IUGR piglets. The mRNA gene abundance of nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), ATP synthase (ATPs), cytochrome c oxidase V (CcOX V), cytochrome c and glucokinase in the jejunum of IUGR piglets was reduced (p < 0.05) compared with NBW piglets. However, NRF1, peroxisome proliferation-activated receptor gamma coactivator-1 alpha, TFAM, ATPs and CcOX I mRNA gene abundance in the jejunum of IUGR piglets were increased (p < 0.05) by diets supplemented with leucine. These data indicate that leucine supplementation has therapeutic potential for attenuating intestinal oxidative stress and mitochondrial dysfunction in IUGR piglets during the early period of life via increasing enzyme activities and up-regulating mRNA gene abundance.


Asunto(s)
Antioxidantes/metabolismo , ADN Mitocondrial/metabolismo , Retardo del Crecimiento Fetal/veterinaria , Leucina/administración & dosificación , Enfermedades de los Porcinos/tratamiento farmacológico , Alimentación Animal/análisis , Crianza de Animales Domésticos , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Retardo del Crecimiento Fetal/tratamiento farmacológico , Yeyuno/metabolismo , Masculino , Oxidación-Reducción , Porcinos , Destete
15.
Arch Anim Nutr ; 71(3): 231-245, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28429991

RESUMEN

It has been shown that there is a relationship between intrauterine growth retardation (IUGR) and postnatal intestinal damage involved in energy deficits. Therefore, the present study was conducted to investigate the effect of medium-chain triglycerides (MCT) on the intestinal morphology, intestinal function and energy metabolism of piglets with IUGR. At weaning (21 ± 1.1 d of age), 24 IUGR piglets and 24 normal birth weight (NBW) piglets were selected according to their birth weights (BW) (IUGR: 0.95 ± 0.04 kg BW; NBW: 1.58 ± 0.04 kg BW) and their weights at the time of weaning (IUGR: 5.26 ± 0.15 kg BW; NBW: 6.98 ± 0.19 kg BW). The piglets were fed a diet of either long-chain triglycerides (LCT) (containing 5% LCT) or MCT (containing 1% LCT and 4% MCT) for 28 d. Then, the piglets' intestinal morphology, biochemical parameters and mRNA abundance related to intestinal damage and energy metabolism were determined. IUGR was found to impair intestinal morphology, with evidence of decreased villus height and increased crypt depth; however, these negative effects of IUGR were ameliorated by MCT treatment. IUGR piglets showed compromised intestinal digestion and absorption functions when compared with NBW piglets. However, feeding MCT increased the maltase activity in the jejunum and alleviated IUGR-induced reductions in plasma d-xylose concentrations and jejunal sucrase activity. IUGR decreased the efficiency of the piglets' intestinal energy metabolism; however, piglets fed an MCT diet exhibited increased adenosine triphosphate (ATP) concentrations and ATP synthase F1 complex beta polypeptide expression, as well as decreased adenosine monophosphate-activated kinase alpha 1 expression in the jejunum of piglets. In addition, up-regulation of the piglets' citrate synthase and succinate dehydrogenase levels was found to occur following MCT treatment at both the activity and the transcriptional levels of the jejunum. Therefore, it can be postulated that MCT treatment has beneficial effects in alleviating IUGR-induced intestinal morphologic damage, which is associated with improved intestinal energy metabolism.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Retardo del Crecimiento Fetal/veterinaria , Intestino Delgado/efectos de los fármacos , Enfermedades de los Porcinos/metabolismo , Triglicéridos/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Intestino Delgado/anatomía & histología , Masculino , Porcinos , Enfermedades de los Porcinos/patología , Destete
16.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R837-46, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26887431

RESUMEN

Intrauterine growth restriction (IUGR) is a leading cause of neonatal mortality and morbidity. Chorionic somatomammotropin hormone (CSH), a placenta-specific secretory product found at high concentrations in maternal and fetal circulation throughout gestation, is significantly reduced in human and sheep IUGR pregnancies. The objective of this study was to knock down ovine CSH (oCSH) expression in vivo using lentiviral-mediated short-hairpin RNA to test the hypothesis that oCSH deficiency would result in IUGR of near-term fetal lambs. Three different lentiviral oCSH-targeting constructs were used and compared with pregnancies (n = 8) generated with a scrambled control (SC) lentiviral construct. Pregnancies were harvested at 135 days of gestation. The most effective targeting sequence, "target 6" (tg6; n = 8), yielded pregnancies with significant reductions (P ≤ 0.05) in oCSH mRNA (50%) and protein (38%) concentrations, as well as significant reductions (P ≤ 0.05) in placental (52%) and fetal (32%) weights compared with the SC pregnancies. Fetal liver weights were reduced 41% (P ≤ 0.05), yet fetal liver insulin-like growth factor-I (oIGF1) and -II mRNA concentrations were reduced (P ≤ 0.05) 82 and 71%, respectively, and umbilical artery oIGF1 concentrations were reduced 62% (P ≤ 0.05) in tg6 pregnancies. Additionally, fetal liver oIGF-binding protein (oIGFBP) 2 and oIGFBP3 mRNA concentrations were reduced (P ≤ 0.05), whereas fetal liver oIGFBP1 mRNA concentration was not impacted nor was maternal liver oIGF and oIGFBP mRNA concentrations or uterine artery oIGF1 concentrations (P ≥ 0.10). Based on our results, it appears that oCSH deficiency does result in IUGR, by impacting placental development as well as fetal liver development and function.


Asunto(s)
Retardo del Crecimiento Fetal/veterinaria , Lactógeno Placentario/deficiencia , Preñez , Ovinos/fisiología , Animales , Blastocisto/fisiología , Femenino , Desarrollo Fetal , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Lentivirus , Placenta/fisiología , Embarazo , Preñez/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Somatomedinas/genética , Somatomedinas/metabolismo
17.
Reproduction ; 151(6): 623-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26980807

RESUMEN

The objectives of this study were to determine how dietary supplementation of N-carbamylglutamate (NCG) and rumen-protected L-arginine (RP-Arg) in nutrient-restricted pregnant Hu sheep would affect (1) maternal endocrine status; (2) maternal, fetal, and placental antioxidation capability; and (3) placental development. From day 35 to day 110 of gestation, 32 Hu ewes carrying twin fetuses were allocated randomly into four groups: 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations, 50% of NRC recommendations supplemented with 20g/day RP-Arg, and 50% of NRC recommendations supplemented with 5g/day NCG product. The results showed that in maternal and fetal plasma and placentomes, the activities of total antioxidant capacity and superoxide dismutase were increased (P<0.05); however, the activity of glutathione peroxidase and the concentration of maleic dialdehyde were decreased (P<0.05) in both NCG- and RP-Arg-treated underfed ewes. The mRNA expression of vascular endothelial growth factor and Fms-like tyrosine kinase 1 was increased (P<0.05) in 50% NRC ewes than in 100% NRC ewes, and had no effect (P>0.05) in both NCG- and RP-Arg-treated underfed ewes. A supplement of RP-Arg and NCG reduced (P<0.05) the concentrations of progesterone, cortisol, and estradiol-17ß; had no effect on T4/T3; and improved (P<0.05) the concentrations of leptin, insulin-like growth factor 1, tri-iodothyronine (T3), and thyroxine (T4) in serum from underfed ewes. These results indicate that dietary supplementation of NCG and RP-Arg in underfed ewes could influence maternal endocrine status, improve the maternal-fetal-placental antioxidation capability, and promote fetal and placental development during early-to-late gestation.


Asunto(s)
Arginina/farmacología , Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/veterinaria , Glutamatos/farmacología , Fenómenos Fisiologicos Nutricionales Maternos/efectos de los fármacos , Placenta/citología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Arginina/administración & dosificación , Femenino , Retardo del Crecimiento Fetal/prevención & control , Glutamatos/administración & dosificación , Placenta/efectos de los fármacos , Placenta/fisiología , Embarazo , Ovinos
18.
Br J Nutr ; 115(8): 1360-9, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26917333

RESUMEN

Intra-uterine growth restriction (IUGR) impairs postnatal growth and skeletal muscle development in neonatal infants. This study evaluated whether dietary ß-hydroxy-ß-methylbutyrate Ca (HMB-Ca) supplementation during the early postnatal period could improve muscle growth in IUGR neonates using piglets as a model. A total of twelve pairs of IUGR and normal-birth-weight (NBW) male piglets with average initial weights (1·85 (sem 0·36) and 2·51 (sem 0·39) kg, respectively) were randomly allotted to groups that received milk-based diets (CON) or milk-based diets supplemented with 800 mg/kg HMB-Ca (HMB) during days 7-28 after birth. Blood and longissimus dorsi (LD) samples were collected and analysed for plasma amino acid content, fibre morphology and the expression of genes related to muscle development. The results indicate that, regardless of diet, IUGR piglets had a significantly decreased average daily weight gain (ADG) compared with that of NBW piglets (P<0·05). However, IUGR piglets fed HMB-Ca had a net weight and ADG similar to that of NBW piglets fed the CON diet. Irrespective of body weight (BW), HMB-Ca supplementation markedly increased the type II fibre cross-sectional area and the mRNA expression of mammalian target of rapamycin (mTOR), insulin-like growth factor-1 and myosin heavy-chain isoform IIb in the LD of piglets (P<0·05). Moreover, there was a significant interaction between the effects of BW and HMB on mTOR expression in the LD (P<0·05). In conclusion, HMB-Ca supplementation during the early postnatal period could improve skeletal muscle growth and maturity by accelerating fast-twitch glycolytic fibre development in piglets.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Calcio de la Dieta/administración & dosificación , Retardo del Crecimiento Fetal/veterinaria , Músculo Esquelético/crecimiento & desarrollo , Enfermedades de los Porcinos/fisiopatología , Valeratos/administración & dosificación , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Peso al Nacer , Suplementos Dietéticos , Retardo del Crecimiento Fetal/fisiopatología , Expresión Génica , Glucólisis , Masculino , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/química , ARN Mensajero , Sus scrofa , Porcinos , Serina-Treonina Quinasas TOR/genética , Aumento de Peso
19.
Am J Physiol Regul Integr Comp Physiol ; 309(8): R920-8, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26224688

RESUMEN

Intrauterine growth-restricted (IUGR) fetal sheep, produced by placental insufficiency, have lower oxygen concentrations, higher lactate concentrations, and increased hepatic glucose production that is resistant to suppression by insulin. We hypothesized that increased lactate production in the IUGR fetus results from reduced glucose oxidation, during basal and maximal insulin-stimulated conditions, and is used to support glucose production. To test this, studies were performed in late-gestation control (CON) and IUGR fetal sheep under basal and hyperinsulinemic-clamp conditions. The basal glucose oxidation rate was similar and increased by 30-40% during insulin clamp in CON and IUGR fetuses (P < 0.005). However, the fraction of glucose oxidized was 15% lower in IUGR fetuses during basal and insulin-clamp periods (P = 0.05). IUGR fetuses also had four-fold higher lactate concentrations (P < 0.001) and lower lactate uptake rates (P < 0.05). In IUGR fetal muscle and liver, mRNA expression of pyruvate dehydrogenase kinase (PDK4), an inhibitor of glucose oxidation, was increased over fourfold. In IUGR fetal liver, but not skeletal muscle, mRNA expression of lactate dehydrogenase A (LDHA) was increased nearly fivefold. Hepatic expression of the gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK)1, and PCK2, was correlated with expression of PDK4 and LDHA. Collectively, these in vivo and tissue data support limited capacity for glucose oxidation in the IUGR fetus via increased PDK4 in skeletal muscle and liver. We speculate that lactate production also is increased, which may supply carbon for glucose production in the IUGR fetal liver.


Asunto(s)
Retardo del Crecimiento Fetal/veterinaria , Feto/metabolismo , Glucosa/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Gluconeogénesis/fisiología , Técnica de Clampeo de la Glucosa , Insulina/metabolismo , Insulina/farmacología , Lactatos/metabolismo , Hígado/metabolismo , Masculino , Oxidación-Reducción , Embarazo , Ovinos
20.
J Med Primatol ; 44(3): 143-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25891005

RESUMEN

BACKGROUND: We hypothesized intrauterine growth restricted offspring (IUGR) demonstrate higher rates of aggression and higher dominance ranks than control (CTR) offspring with normal weight at term; if aggressive behavior is advantageous during resource scarcity, developmental programming may lead to an association between aggression and IUGR. METHODS: We studied 22 group-housed baboons (ages 3-5 years). CTR (male n = 8, female n = 5) mothers ate ad libitum. IUGR (male n = 4, female n = 5) mothers were fed 70% feed eaten by CTR mothers during pregnancy and lactation. RESULTS: IUGR showed higher rates of aggressive displays (P < 0.01) and friendly displays (P < 0.02). Dominance ranks and physical aggression rates did not differ between groups. CONCLUSIONS: High rates of IUGR aggressive display might reflect developmental programming of behavioral phenotypes enhancing fitness. Friendly displays may reflect reconciliation. Potential mechanisms include neurodevelopment and learning. Exploration of IUGR as a risk factor for behavioral patterns is important for developing diagnostic and therapeutic strategies.


Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Retardo del Crecimiento Fetal/veterinaria , Papio , Factores de Edad , Animales , Peso Corporal , Femenino , Retardo del Crecimiento Fetal/psicología , Vivienda para Animales , Masculino , Embarazo , Factores Sexuales , Conducta Social , Predominio Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA