Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Virol ; 98(1): e0117623, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054609

RESUMEN

The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades de los Peces , Rhabdoviridae , Factor 6 Asociado a Receptor de TNF , Ubiquitina-Proteína Ligasas , Virosis , Animales , Antivirales , Mamíferos , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Virosis/metabolismo , Virosis/virología , Rhabdoviridae/metabolismo , Peces , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/virología , Proteínas de Unión al Calcio/metabolismo
2.
PLoS Pathog ; 19(12): e1011894, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150467

RESUMEN

The protein-coding ability of circRNAs has recently been a hot topic, but the role of protein-coding circRNAs in antiviral innate immunity of teleost fish has rarely been reported. Here, we identified a novel circRNA, termed circMORC3, derived from Microrchidia 3 (MORC3) gene in Miichthys miiuy. circMORC3 can inhibit the expression of antiviral cytokines. In addition, circMORC3 encodes a novel peptide with a length of 84 amino acids termed MORC3-84aa. MORC3-84aa not only significantly inhibited TRIF-mediated activation of IRF3 and NF-κB signaling pathways, but also effectively suppressed the expression of antiviral cytokines triggered by RNA virus Siniperca chuatsi rhabdovirus (SCRV). We found that MORC3-84aa directly interacted with TRIF and negatively regulated TRIF protein expression. In addition, host gene MORC3 attenuates SCRV-induced IFN and ISG expression. Mechanistically, MORC3-84aa promotes autophagic degradation of TRIF by enhancing K6-linked ubiquitination and inhibits TRIF-mediated activation of the type I interferon signaling pathway. And the host gene MORC3 not only repressed IRF3 protein expression but also inhibited IRF3 phosphorylation levels. Our study shows that circMORC3 and host gene MORC3 played a synergistic role in viral immune escape.


Asunto(s)
ARN Circular , Rhabdoviridae , Animales , Transducción de Señal , FN-kappa B/metabolismo , Inmunidad Innata/genética , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Citocinas , Peces , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
3.
J Virol ; 97(10): e0071423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37735152

RESUMEN

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Asunto(s)
Lubina , Rhabdoviridae , Animales , Rhabdoviridae/metabolismo , Lubina/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Endocitosis , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentración de Iones de Hidrógeno , Internalización del Virus
4.
Plant Physiol ; 190(2): 1349-1364, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35771641

RESUMEN

Plant rhabdoviruses heavily rely on insect vectors for transmission between sessile plants. However, little is known about the underlying mechanisms of insect attraction and transmission of plant rhabdoviruses. In this study, we used an arthropod-borne cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), to demonstrate the molecular mechanisms of a rhabdovirus accessory protein in improving plant attractiveness to insect vectors. Here, we found that BYSMV-infected barley (Hordeum vulgare L.) plants attracted more insect vectors than mock-treated plants. Interestingly, overexpression of BYSMV P6, an accessory protein, in transgenic wheat (Triticum aestivum L.) plants substantially increased host attractiveness to insect vectors through inhibiting the jasmonic acid (JA) signaling pathway. The BYSMV P6 protein interacted with the constitutive photomorphogenesis 9 signalosome subunit 5 (CSN5) of barley plants in vivo and in vitro, and negatively affected CSN5-mediated deRUBylation of cullin1 (CUL1). Consequently, the defective CUL1-based Skp1/Cullin1/F-box ubiquitin E3 ligases could not mediate degradation of jasmonate ZIM-domain proteins, resulting in compromised JA signaling and increased insect attraction. Overexpression of BYSMV P6 also inhibited JA signaling in transgenic Arabidopsis (Arabidopsis thaliana) plants to attract insects. Our results provide insight into how a plant cytorhabdovirus subverts plant JA signaling to attract insect vectors.


Asunto(s)
Arabidopsis , Hordeum , Rhabdoviridae , Animales , Arabidopsis/metabolismo , Complejo del Señalosoma COP9/metabolismo , Ciclopentanos/metabolismo , Hordeum/genética , Hordeum/metabolismo , Insectos Vectores , Oxilipinas/metabolismo , Proteínas/metabolismo , Rhabdoviridae/metabolismo , Transducción de Señal , Triticum/genética , Triticum/metabolismo , Ubiquitinas/metabolismo
5.
Anim Biotechnol ; 33(1): 22-42, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32367758

RESUMEN

Myxovirus resistance (Mx) proteins belonging to the dynamin superfamily of high molecular weight GTPases exist in various isoforms and play crucial role in innate immunity. In addition to the isoforms, Mx1 also plays important role in exerting its anti-viral actions against a broad range of animal RNA viruses. In rohu (Labeo rohita), mx1 full-length cDNA sequence consists of 2440 nucleotides (nt) encoding 628 amino acids (aa) polypeptide of 71.289 kDa. Structurally, it belongs to the family of large GTPases with one DYNc domain (13-257aa) comprising of dynamin family motifs (LPRGSGIVTR) and the tripartite GTP-binding motifs (GDQSSGKS, DLPG and TKPD) at the N-terminal and one GED domain (537-628aa) at C-terminus. Rohu Mx1 is closely related to zebrafish Mx1 and is widely expressed in gill, liver, kidney, spleen and blood. In response to rhabdovirus vaccinations, poly I:C stimulation and bacterial infections, mx1 gene expression in rohu was significantly (p < 0.05) induced in majority of the tested organs/tissues. Stimulation of rohu gill cell line with bacterial RNA also induced mx1 gene expression. Together these data suggest the important role of Mx1 in innate immunity in rohu against wide spectrum of fish pathogens.


Asunto(s)
Proteínas de Peces , Rhabdoviridae , Secuencia de Aminoácidos , Animales , Proteínas de Peces/genética , GTP Fosfohidrolasas , Regulación de la Expresión Génica , Mamíferos/metabolismo , ARN Bacteriano , Rhabdoviridae/metabolismo , Vacunación , Pez Cebra/metabolismo
6.
PLoS Pathog ; 15(3): e1007695, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30925159

RESUMEN

p53, which regulates cell-cycle arrest and apoptosis, is a crucial target for viruses to release cells from cell-cycle checkpoints or to protect cells from apoptosis for their own benefit. Viral evasion mechanisms of aquatic viruses remain mysterious. Here, we report the spring viremia of carp virus (SVCV) degrading and stabilizing p53 in the ubiquitin-proteasome pathway by the N and P proteins, respectively. Early in an SVCV infection, significant induction was observed in the S phase and p53 was decreased in the protein level. Further experiments demonstrated that p53 interacted with SVCV N protein and was degraded by suppressing the K63-linked ubiquitination. However, the increase of p53 was observed late in the infection and experiments suggested that p53 was bound to SVCV P protein and stabilized by enhancing the K63-linked ubiquitination. Finally, lysine residue 358 was the key site for p53 K63-linked ubiquitination by the N and P proteins. Thus, our findings suggest that fish p53 is modulated by SVCV N and P protein in two distinct mechanisms, which uncovers the strategy for the subversion of p53-mediated host innate immune responses by aquatic viruses.


Asunto(s)
Rhabdoviridae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Puntos de Control del Ciclo Celular/fisiología , Virus ADN , Enfermedades de los Peces , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Humanos , Inmunidad Innata , Rhabdoviridae/patogenicidad , Ubiquitinación , Viremia , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626676

RESUMEN

The Sf9 and Sf21 cell lines derived from ovarian tissues of the wide-host-range phytophagous lepidopteran Spodoptera frugiperda are widely used for research and commercial-scale production of recombinant proteins. These cell lines are chronically infected with a rhabdovirus (Sf-RV) that does not cause any overt cytopathic effects. We demonstrate that wild populations of S. frugiperda in the eastern United States and Caribbean are infected with genetically diverse strains of Sf-RV and that this virus is also capable of infecting cells of Spodoptera exigua, Heliothis subflexa, and Bombyx mori Feeding studies demonstrated the ability of S. frugiperda larvae to deposit Sf-RV onto human-consumed vegetables during feeding. Although no evidence for replication in two species of plant cells was detected, subcellular localization studies demonstrated that the Sf-RV nucleocapsid was targeted to plasmodesmata, while two forms of the accessory protein were differentiated on the basis of their ability to localize to nuclei. Collectively, the results from this study suggest that environmental exposure of humans to Sf-RV is likely to be commonplace and frequent, but its inability to replicate in plant or human cells suggests that there is no substantial risk to human health.IMPORTANCE Insect-derived cell lines are widely used commercially for the production of vaccines and protein-based pharmaceuticals. After decades of safe and beneficial use, it was a surprise to the biotechnology industry to discover an endemic rhabdovirus in Sf9 cells. This discovery was made possible only by the substantial advancements in DNA sequencing technologies. Given the public health concerns associated with many rhabdovirus species, several initiatives were undertaken to establish that Spodoptera frugiperda rhabdovirus (Sf-RV) does not pose a threat to humans. Such actions include the generation of cell lines that have been cleared of Sf-RV. Given that Sf9 is derived from a moth whose larvae feed on human-edible foods, we explored the prevalence of Sf-RV in its wild and lab-grown populations, as well as its ability to be deposited on food items during feeding. Collectively, our data suggest that there is no overt risk from exposure to Sf-RV.


Asunto(s)
Especificidad del Huésped/fisiología , Rhabdoviridae/fisiología , Spodoptera/virología , Animales , Línea Celular , Humanos , Insectos/virología , Larva/metabolismo , Larva/virología , Plantas/virología , Proteínas Recombinantes/metabolismo , Rhabdoviridae/metabolismo , Células Sf9 , Spodoptera/metabolismo , Proteínas Virales/metabolismo
8.
Arch Virol ; 165(10): 2165-2176, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32740830

RESUMEN

The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Infecciones por Virus ARN/genética , Apoptosis/genética , Autofagia/genética , Autofagia/inmunología , Citocinas/genética , Citocinas/inmunología , Endocitosis/genética , Endocitosis/inmunología , Filoviridae/genética , Filoviridae/metabolismo , Filoviridae/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Interferones/genética , Interferones/inmunología , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidad , Paramyxoviridae/genética , Paramyxoviridae/metabolismo , Paramyxoviridae/patogenicidad , Fosfatidilinositol 3-Quinasa/inmunología , Pneumovirinae/genética , Pneumovirinae/metabolismo , Pneumovirinae/patogenicidad , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Rhabdoviridae/patogenicidad , Transducción de Señal , Proteínas Virales/genética , Proteínas Virales/inmunología , Internalización del Virus , Replicación Viral
9.
J Exp Bot ; 70(15): 4049-4062, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31020313

RESUMEN

As obligate parasites, plant viruses usually hijack host cytoskeletons for replication and movement. Rhabdoviruses are enveloped, negative-stranded RNA viruses that infect vertebrates, invertebrates, and plants, but the mechanisms of intracellular trafficking of plant rhabdovirus proteins are largely unknown. Here, we used Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, as a model to investigate the effects of the actin cytoskeleton on viral intracellular movement and viral RNA synthesis in a mini-replicon (MR) system. The BYSMV P protein forms mobile inclusion bodies that are trafficked along the actin/endoplasmic reticulum network, and recruit the N and L proteins into viroplasm-like structures. Deletion analysis showed that the N terminal region (aa 43-55) and the remaining region (aa 56-295) of BYSMV P are essential for the mobility and formation of inclusions, respectively. Overexpression of myosin XI-K tails completely abolishes the trafficking activity of P bodies, and is accompanied by a significant reduction of viral MR RNA synthesis. These results suggest that BYSMV P contributes to the formation and trafficking of viroplasm-like structures along the ER/actin network driven by myosin XI-K. Thus, rhabdovirus P appears to be a dynamic hub protein for efficient recruitment of viral proteins, thereby promoting viral RNA synthesis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Hordeum/metabolismo , Hordeum/virología , ARN Viral/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/patogenicidad , Citoesqueleto de Actina/genética , Actinas/genética , Hordeum/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Viral/genética
10.
Dokl Biochem Biophys ; 484(1): 88-91, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31012023

RESUMEN

The role of the nuclear protein coilin in the mechanisms of resistance of potato Solanum tuberosum cultivar Chicago to biotic and abiotic stresses was studied using the CRISPR-Cas9 technology. For the coilin gene editing, a complex consisting of the Cas9 endonuclease and a short guide RNA was immobilized on gold or chitosan microparticles and delivered into apical meristem cells by bioballistics or vacuum infiltration methods, respectively. Editing at least one allele of the coilin gene considerably increased the resistance of the edited lines to infection with the potato virus Y and their tolerance to salt and osmotic stress.


Asunto(s)
Resistencia a la Enfermedad , Meristema , Proteínas Nucleares , Presión Osmótica , Enfermedades de las Plantas/virología , Proteínas de Plantas , Rhabdoviridae/metabolismo , Solanum tuberosum , Sistemas CRISPR-Cas , Meristema/genética , Meristema/metabolismo , Meristema/virología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virología
11.
J Gen Virol ; 99(5): 743-752, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29616892

RESUMEN

The ability of the matrix (M) protein of potato yellow dwarf virus (PYDV) to remodel nuclear membranes is controlled by a di-leucine motif located at residues 223 and 224 of its primary structure. This function can be uncoupled from that of its nuclear localization signal (NLS), which is controlled primarily by lysine and arginine residues immediately downstream of the LL motif. In planta localization of green fluorescent protein fusions, bimolecular fluorescence complementation assays with nuclear import receptor importin-α1 and yeast-based nuclear import assays provided three independent experimental approaches to validate the authenticity of the M-NLS. The carboxy terminus of M is predicted to contain a nuclear export signal, which is belived to be functional, given the ability of M to bind the Arabidopsis nuclear export receptor 1 (XPO1). The nuclear shuttle activity of M has implications for the cell-to-cell movement of PYDV nucleocapsids, based upon its interaction with the N and Y proteins.


Asunto(s)
Señales de Localización Nuclear/genética , Rhabdoviridae/genética , Proteínas de la Matriz Viral/genética , Transporte Activo de Núcleo Celular , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Carioferinas/genética , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/virología , Unión Proteica , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Rhabdoviridae/metabolismo , alfa Carioferinas/genética
12.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795419

RESUMEN

We report an in vitro RNA synthesis assay for the RNA-dependent RNA polymerase (RdRP) of rabies virus (RABV). We expressed RABV large polymerase protein (L) in insect cells from a recombinant baculovirus vector and the phosphoprotein cofactor (P) in Escherichia coli and purified the resulting proteins by affinity and size exclusion chromatography. Using chemically synthesized short RNA corresponding to the first 19 nucleotides (nt) of the rabies virus genome, we demonstrate that L alone initiates synthesis on naked RNA and that P serves to enhance the initiation and processivity of the RdRP. The L-P complex lacks full processivity, which we interpret to reflect the lack of the viral nucleocapsid protein (N) on the template. Using this assay, we define the requirements in P for stimulation of RdRP activity as residues 11 to 50 of P and formally demonstrate that ribavirin triphosphate (RTP) inhibits the RdRP. By comparing the properties of RABV RdRP with those of the related rhabdovirus, vesicular stomatitis virus (VSV), we demonstrate that both polymerases can copy the heterologous promoter sequence. The requirements for engagement of the N-RNA template of VSV by its polymerase are provided by the C-terminal domain (CTD) of P. A chimeric RABV P protein in which the oligomerization domain (OD) and the CTD were replaced by those of VSV P stimulated RABV RdRP activity on naked RNA but was insufficient to permit initiation on the VSV N-RNA template. This result implies that interactions between L and the template N are also required for initiation of RNA synthesis, extending our knowledge of ribonucleoprotein interactions that are critical for gene expression. IMPORTANCE: The current understanding of the structural and functional significance of the components of the rabies virus replication machinery is incomplete. Although structures are available for the nucleocapsid protein in complex with RNA, and also for portions of P, information on both the structure and function of the L protein is lacking. This study reports the expression and purification of the full-length L protein of RABV and the characterization of its RdRP activity in vitro The study provides a new assay that has utility for screening inhibitors and understanding their mechanisms of action, as well as defining new interactions that are required for RdRP activity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Regulación Viral de la Expresión Génica , Fosfoproteínas/genética , ARN Viral/genética , Virus de la Rabia/genética , Ribonucleoproteínas/genética , Proteínas Virales/genética , Proteínas Estructurales Virales/genética , Baculoviridae/genética , Baculoviridae/metabolismo , Bioensayo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Chaperonas Moleculares , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Nucleótidos/farmacología , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN , Virus de la Rabia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Ribonucleoproteínas/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo
13.
Virol J ; 15(1): 72, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29678167

RESUMEN

BACKGROUND: In China, the rice pathogen Rice yellow stunt virus (RYSV), a member of the genus Nucleorhabdovirus in the family Rhabdoviridae, was a severe threat to rice production during the1960s and1970s. Fundamental aspects of the biology of this virus such as protein localization and formation of the RYSV viroplasm during infection of insect vector cells are largely unexplored. The specific role(s) of the structural proteins nucleoprotein (N) and phosphoprotein (P) in the assembly of the viroplasm during RYSV infection in insect vector is also unclear. METHODS: In present study, we used continuous leafhopper cell culture, immunocytochemical techniques, and transmission electron microscopy to investigate the subcellular distributions of N and P during RYSV infection. Both GST pull-down assay and yeast two-hybrid assay were used to assess the in vitro interaction of N and P. The dsRNA interference assay was performed to study the functional roles of N and P in the assembly of RYSV viroplasm. RESULTS: Here we demonstrated that N and P colocalized in the nucleus of RYSV-infected Nephotettix cincticeps cell and formed viroplasm-like structures (VpLSs). The transiently expressed N and P are sufficient to form VpLSs in the Sf9 cells. In addition, the interactions of N/P, N/N and P/P were confirmed in vitro. More interestingly, the accumulation of RYSV was significantly reduced when the transcription of N gene or P gene was knocked down by dsRNA treatment. CONCLUSIONS: In summary, our results suggest that N and P are the main viral factors responsible for the formation of viroplasm in RYSV-infected insect cells. Early during RYSV infection in the insect vector, N and P interacted with each other in the nucleus to form viroplasm-like structures, which are essential for the infection of RYSV.


Asunto(s)
Hemípteros/citología , Hemípteros/virología , Insectos Vectores/citología , Insectos Vectores/virología , Oryza/virología , Virus de Plantas/fisiología , Rhabdoviridae/metabolismo , Animales , Células Cultivadas , China , Técnicas de Silenciamiento del Gen , Hemípteros/ultraestructura , Insectos Vectores/ultraestructura , Técnicas del Sistema de Dos Híbridos , Proteínas Estructurales Virales/metabolismo , Replicación Viral
14.
J Virol ; 88(12): 6576-85, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24672045

RESUMEN

UNLABELLED: The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. IMPORTANCE: The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell line. This paper reports on the identification and characterization of a novel rhabdovirus in Sf9 cells. This was accomplished through the use of next-generation sequencing platforms, de novo assembly tools, and extensive bioinformatics analysis. Rhabdovirus identification was further confirmed by transmission electron microscopy. Infectivity studies showed the lack of replication of Sf-rhabdovirus in human cell lines. The overall study highlights the use of a combinatorial testing approach including conventional methods and new technologies for evaluation of cell lines for unexpected viruses and use of comprehensive bioinformatics strategies for obtaining confident next-generation sequencing results.


Asunto(s)
Rhabdoviridae/aislamiento & purificación , Spodoptera/virología , Secuencia de Aminoácidos , Animales , Genoma Viral , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Rhabdoviridae/clasificación , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Alineación de Secuencia , Células Sf9 , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
Vet Pathol ; 52(6): 1258-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25689989

RESUMEN

Siniperca chuatsi rhabdovirus (SCRV) is one of myriad rhabdoviruses recorded in fish. Preliminary data show that inhibition of the SCRV nucleoprotein (N) could significantly reduce the progeny virus titers in infected Epithelioma papulosum cyprinid (EPC) cells. Here, the authors propose that cleavage of the viral 47-kDa N protein is caspase-mediated based on caspase inhibition experiments, transient expression in EPC transfection, and analysis of cleavage sites. Cleavage of the SCRV N protein in culture was prevented by a pan-caspase inhibitor, z-VAD-FMK (z-Val-Ala-DL-Asp-fluoromethyl ketone). Subsequently, N was transiently expressed in EPC cells, the results of which indicated that the specific cleavage of N also occurred in the cells transfected with N-GFP plasmid. Several truncated fragments of the N gene were constructed and transiently transfected into EPC cells. Immunoblotting results indicated that D324 and D374 are the cleavage sites of N by caspases. The authors also found that z-VAD-FMK could inhibit the cytopathic effect in SCRV-infected EPC cells but not affect the production of infectious progeny, suggesting that the caspase-mediated cleavage of N protein is not required for in vitro SCRV replication. To the authors' knowledge, this is the first report on the cleavage of rhabdovirus proteins.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Enfermedades de los Peces/virología , Nucleoproteínas/metabolismo , Rhabdoviridae/metabolismo , Animales , Apoptosis , Caspasas/genética , Peces , Genes Reporteros , Proteolisis/efectos de los fármacos , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
16.
Arch Virol ; 159(7): 1841-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24519460

RESUMEN

In this study, we calculated the relative synonymous codon usage (RSCU) value and the effective number of codons (ENC) value to carry out principal component analysis (PCA) and correlation analysis of the codon usage pattern of the phosphoprotein gene (P gene) of spring viraemia of carp virus (SVCV). The synonymous codon usage pattern in P genes is geography-specific, based on PCA analysis. The high correlation between (G + C)1,2 % and (G + C)3 % suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage and base components in P genes. At least 40 out of 59 synonymous codons are similarly selected in all functional genes within five complete SVCV genomes, and the hosts based on the RSCU data. These results not only provide insight into variations in the codon usage pattern of SVCV but also may help in understanding the processes governing the evolution of SVCV.


Asunto(s)
Carpas , Codón , Enfermedades de los Peces/virología , Fosfoproteínas/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Rhabdoviridae/metabolismo , Adaptación Fisiológica/genética , Animales , Regulación Viral de la Expresión Génica/fisiología , Fosfoproteínas/genética , Filogenia , Rhabdoviridae/genética , Infecciones por Rhabdoviridae/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
Methods ; 59(2): 188-98, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22687619

RESUMEN

The RNA-dependent RNA polymerase L protein of vesicular stomatitis virus (VSV), a prototypic nonsegmented negative strand (NNS) RNA virus classified into the Rhabdoviridae family, has been used to investigate the fundamental molecular mechanisms of NNS RNA viral mRNA synthesis and processing. In vitro studies on mRNA cap formation with the VSV L protein eventually led to the discovery of the unconventional mRNA capping pathway catalyzed by the guanosine 5'-triphosphatase and RNA:GDP polyribonucleotidyltransferase (PRNTase) activities. The PRNTase activity is a novel enzymatic activity, which transfers 5'-monophosphorylated (p-) RNA from 5'-triphosphorylated (ppp-) RNA to GDP to form 5'-capped RNA (GpppRNA) in a viral mRNA-start sequence-dependent manner. This unconventional capping (pRNA transfer) reaction with PRNTase can be experimentally distinguished from the conventional capping (GMP transfer) reaction with eukaryotic GTP:RNA guanylyltransferase (GTase) on the basis of the following differences in their substrate specificity for the cap formation: PRNTase uses GDP and pppRNA, but not ppRNA, whereas GTase employs GTP, but not GDP, and ppRNA. The pRNA transfer reaction with PRNTase proceeds through a covalent enzyme-pRNA intermediate with a phosphoamide bond. Hence, to prove the PRNTase activity, it is necessary to demonstrate the following consecutive steps separately: (1) the enzyme forms a covalent enzyme-pRNA intermediate, and (2) the intermediate transfers pRNA to GDP. This article describes the methods for in vitro transcription and capping with the recombinant VSV L protein, which permit detailed characterization of its enzymatic reactions and mapping of active sites of its enzymatic domains. It is expected that these systems are adaptable to rhabdoviruses and, by extension, other NNS RNA viruses belonging to different families.


Asunto(s)
Técnicas Genéticas , Caperuzas de ARN/genética , Rhabdoviridae/genética , Transcripción Genética/genética , Animales , Humanos , Rhabdoviridae/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/metabolismo
18.
Virology ; 594: 110038, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38471199

RESUMEN

Our laboratory previously discovered a novel rhabdovirus in the Spodoptera frugiperda Sf9 insect cell line that was designated as Sf-rhabdovirus. Using limiting dilution, this cell line was found to be a mixed population of cells infected by Sf-rhabdovirus variants containing either the full length X accessory gene with a 3.7 kb internal duplication (designated as Sf-rhabdovirus X+3.7) or lacking the duplication and part of the X gene (designated as Sf-rhabdovirus X-), and cells that were negative for Sf-rhabdovirus. In this paper, we found that the Sf-rhabdovirus negative cell clones had sub-populations with different susceptibilities to the replication of Sf-rhabdovirus X+3.7 and X- variants: cell clone Sf9-13F12 was more sensitive to replication by both virus variants compared to Sf9-3003; moreover, Sf9-3003 showed more resistance to X+3.7 replication than to X- replication. RNA-Seq analysis indicated significant differentially expressed genes in the Sf9-13F12 and Sf9-3003 cell clones further supporting that distinct sub-populations of virus-negative cells co-exist in the parent Sf9 cell line.


Asunto(s)
Rhabdoviridae , Virus , Animales , Células Sf9 , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Células Clonales , Línea Celular , Spodoptera
19.
Autophagy ; 20(2): 275-294, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37656054

RESUMEN

Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.


Asunto(s)
Autofagia , Rhabdoviridae , Autofagia/genética , Proteínas Virales/metabolismo , Plantas/metabolismo , Proteínas Fluorescentes Verdes , Glicoproteínas/farmacología , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Antivirales/farmacología
20.
Mol Plant Microbe Interact ; 26(8): 927-36, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23634838

RESUMEN

The P6 protein of Rice yellow stunt rhabdovirus (RYSV) is a virion structural protein that can be phosphorylated in vitro. However its exact function remains elusive. We found that P6 enhanced the virulence of Potato virus X (PVX) in Nicotiana benthamiana and N. tabacum plants, suggesting that it might function as a suppressor of RNA silencing. We examined the mechanism of P6-mediated silencing suppression by transiently expressing P6 in both N. benthamiana leaves and rice protoplasts. Our results showed that P6 could repress the production of secondary siRNAs and inhibit systemic green fluorescent protein RNA silencing but did not interfere with local RNA silencing in N. benthamiana plants or in rice protoplasts. Intriguingly, P6 and RDR6 had overlapping subcellular localization and P6 bound both rice and Arabidopsis RDR6 in vivo. Furthermore, transgenic rice plants expressing P6 showed enhanced susceptibility to infection by Rice stripe virus. Hence, we propose that P6 is part of the RYSV's counter-defense machinery against the plant RNA silencing system and plays a role mainly in affecting RDR6-mediated secondary siRNA synthesis. Our work provides a new perspective on how a plant-infecting nucleorhabdovirus may counteract host RNA silencing-mediated antiviral defense.


Asunto(s)
Proteínas de Plantas/metabolismo , ARN Interferente Pequeño/metabolismo , Rhabdoviridae/metabolismo , Proteínas Virales/metabolismo , Animales , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plásmidos , Potexvirus/patogenicidad , Interferencia de ARN , Nicotiana/virología , Proteínas Virales/clasificación , Proteínas Virales/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA