Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.026
Filtrar
1.
Mol Cell ; 83(8): 1264-1279.e10, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36965480

RESUMEN

The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.


Asunto(s)
ARN Polimerasa II , Ribonucleoproteína Nuclear Pequeña U1 , Animales , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Empalmosomas/genética , Intrones/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme del ARN , Precursores del ARN/genética , Mamíferos/metabolismo
2.
Nat Rev Mol Cell Biol ; 18(1): 18-30, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27677860

RESUMEN

Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.


Asunto(s)
Regiones no Traducidas 3' , Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Exones , Regulación de la Expresión Génica , Humanos , Precursores del ARN/genética , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
3.
Mol Cell ; 81(9): 1859-1860, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33961773

RESUMEN

Daniels et al. (2021) and Jourdain et al. (2021) identify LUC7L2 as a component of the U1 snRNP capable of reprogramming cellular metabolism through changes in alternative pre-mRNA splicing.


Asunto(s)
Empalme Alternativo , Neoplasias , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
4.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33852893

RESUMEN

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Asunto(s)
Glucólisis , Fosforilación Oxidativa , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ácido Glutámico/metabolismo , Glucógeno/metabolismo , Glucólisis/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Fosfofructoquinasa-1 Tipo Muscular/genética , Fosfofructoquinasa-1 Tipo Muscular/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética
5.
Genes Dev ; 35(1-2): 147-156, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33303640

RESUMEN

Transcriptionally silent genes must be activated throughout development. This requires nucleosomes be removed from promoters and enhancers to allow transcription factor (TF) binding and recruitment of coactivators and RNA polymerase II (Pol II). Specialized pioneer TFs bind nucleosome-wrapped DNA to perform this chromatin opening by mechanisms that remain incompletely understood. Here, we show that GAGA factor (GAF), a Drosophila pioneer-like factor, functions with both SWI/SNF and ISWI family chromatin remodelers to allow recruitment of Pol II and entry to a promoter-proximal paused state, and also to promote Pol II's transition to productive elongation. We found that GAF interacts with PBAP (SWI/SNF) to open chromatin and allow Pol II to be recruited. Importantly, this activity is not dependent on NURF as previously proposed; however, GAF also synergizes with NURF downstream from this process to ensure efficient Pol II pause release and transition to productive elongation, apparently through its role in precisely positioning the +1 nucleosome. These results demonstrate how a single sequence-specific pioneer TF can synergize with remodelers to activate sets of genes. Furthermore, this behavior of remodelers is consistent with findings in yeast and mice, and likely represents general, conserved mechanisms found throughout eukarya.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Ensamble y Desensamble de Cromatina/genética , Unión Proteica , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética
6.
Cell ; 150(1): 53-64, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22770214

RESUMEN

U1 snRNP (U1), in addition to its splicing role, protects pre-mRNAs from drastic premature termination by cleavage and polyadenylation (PCPA) at cryptic polyadenylation signals (PASs) in introns. Here, a high-throughput sequencing strategy of differentially expressed transcripts (HIDE-seq) mapped PCPA sites genome wide in divergent organisms. Surprisingly, whereas U1 depletion terminated most nascent gene transcripts within ~1 kb, moderate functional U1 level decreases, insufficient to inhibit splicing, dose-dependently shifted PCPA downstream and elicited mRNA 3' UTR shortening and proximal 3' exon switching characteristic of activated immune and neuronal cells, stem cells, and cancer. Activated neurons' signature mRNA shortening could be recapitulated by U1 decrease and antagonized by U1 overexpression. Importantly, we show that rapid and transient transcriptional upregulation inherent to neuronal activation physiology creates U1 shortage relative to pre-mRNAs. Additional experiments suggest cotranscriptional PCPA counteracted by U1 association with nascent transcripts, a process we term telescripting, ensuring transcriptome integrity and regulating mRNA length.


Asunto(s)
Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Animales , Línea Celular , Drosophila melanogaster , Estudio de Asociación del Genoma Completo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células 3T3 NIH , Neuronas/metabolismo , Procesamiento de Término de ARN 3' , Empalme del ARN
7.
Nature ; 596(7871): 296-300, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349264

RESUMEN

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Empalmosomas/enzimología , Actinas/genética , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/ultraestructura , Modelos Moleculares , Mutación , Dominios Proteicos , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química , Empalmosomas/metabolismo
8.
Mol Cell ; 76(4): 590-599.e4, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31522989

RESUMEN

Full-length transcription in the majority of human genes depends on U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3' end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs) in introns. However, the mechanism of this U1 activity, termed telescripting, is unknown. Here, we captured a complex, comprising U1 and CPA factors (U1-CPAFs), that binds intronic PASs and suppresses PCPA. U1-CPAFs are distinct from U1-spliceosomal complexes; they include CPA's three main subunits, CFIm, CPSF, and CstF; lack essential splicing factors; and associate with transcription elongation and mRNA export complexes. Telescripting requires U1:pre-mRNA base-pairing, which can be disrupted by U1 antisense oligonucleotide (U1 AMO), triggering PCPA. U1 AMO remodels U1-CPAFs, revealing changes, including recruitment of CPA-stimulating factors, that explain U1-CPAFs' switch from repressive to activated states. Our findings outline this U1 telescripting mechanism and demonstrate U1's unique role as central regulator of pre-mRNA processing and transcription.


Asunto(s)
Núcleo Celular/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , División del ARN , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Estimulación del Desdoblamiento/genética , Factor de Estimulación del Desdoblamiento/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Poli A/metabolismo , Unión Proteica , Precursores del ARN/genética , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U1/genética
9.
EMBO J ; 41(1): e107640, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34779515

RESUMEN

SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.


Asunto(s)
Exones/genética , Conformación de Ácido Nucleico , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Unión Proteica , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo
10.
Nature ; 580(7801): 147-150, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238924

RESUMEN

Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing1-13. Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14-16-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name 'RNA elements for subcellular localization by sequencing' (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5' splice sites and depleted of 3' splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , ARN Largo no Codificante/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Animales , Línea Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutagénesis , Motivos de Nucleótidos , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Largo no Codificante/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
11.
Mol Cell ; 69(4): 648-663.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29398447

RESUMEN

Regulation of RNA polymerase II (Pol II) elongation is a critical step in gene regulation. Here, we report that U1 snRNP recognition and transcription pausing at stable nucleosomes are linked through premature polyadenylation signal (PAS) termination. By generating RNA exosome conditional deletion mouse embryonic stem cells, we identified a large class of polyadenylated short transcripts in the sense direction destabilized by the RNA exosome. These PAS termination events are enriched at the first few stable nucleosomes flanking CpG islands and suppressed by U1 snRNP. Thus, promoter-proximal Pol II pausing consists of two processes: TSS-proximal and +1 stable nucleosome pausing, with PAS termination coinciding with the latter. While pausing factors NELF/DSIF only function in the former step, flavopiridol-sensitive mechanism(s) and Myc modulate both steps. We propose that premature PAS termination near the nucleosome-associated pause site represents a common transcriptional elongation checkpoint regulated by U1 snRNP recognition, nucleosome stability, and Myc activity.


Asunto(s)
Regulación de la Expresión Génica , Nucleosomas/fisiología , Poliadenilación , ARN Polimerasa II/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Elongación de la Transcripción Genética , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HEK293 , Humanos , Ratones , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Empalmosomas/genética , Factores de Transcripción
12.
Mol Cell ; 71(6): 1012-1026.e3, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174293

RESUMEN

Pre-mRNA splicing is an essential step in the expression of most human genes. Mutations at the 5' splice site (5'ss) frequently cause defective splicing and disease due to interference with the initial recognition of the exon-intron boundary by U1 small nuclear ribonucleoprotein (snRNP), a component of the spliceosome. Here, we use a massively parallel splicing assay (MPSA) in human cells to quantify the activity of all 32,768 unique 5'ss sequences (NNN/GYNNNN) in three different gene contexts. Our results reveal that although splicing efficiency is mostly governed by the 5'ss sequence, there are substantial differences in this efficiency across gene contexts. Among other uses, these MPSA measurements facilitate the prediction of 5'ss sequence variants that are likely to cause aberrant splicing. This approach provides a framework to assess potential pathogenic variants in the human genome and streamline the development of splicing-corrective therapies.


Asunto(s)
Empalme Alternativo/genética , Sitios de Empalme de ARN/genética , Sitios de Empalme de ARN/fisiología , Empalme Alternativo/fisiología , Proteínas Portadoras/genética , Secuencia Conservada/genética , Exones , Genes BRCA2 , Células HeLa , Humanos , Intrones , Mutación , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Nuclear Pequeño/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Empalmosomas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Factores de Elongación Transcripcional
13.
RNA ; 29(5): 531-550, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36737103

RESUMEN

Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Empalmosomas , Humanos , Empalmosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Empalme del ARN , Intrones , Ribonucleoproteína Nuclear Pequeña U1/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
RNA ; 29(8): 1140-1165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137667

RESUMEN

Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.


Asunto(s)
Precursores del ARN , Sitios de Empalme de ARN , Animales , Ratones , Sitios de Empalme de ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Interferencia de ARN , Empalme del ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Empalme Alternativo , Mamíferos/genética
15.
Plant Cell ; 34(2): 834-851, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791475

RESUMEN

Precursor messenger RNA (Pre-mRNA) splicing is a crucial step in gene expression whereby the spliceosome produces constitutively and alternatively spliced transcripts. These transcripts not only diversify the transcriptome, but also play essential roles in plant development and responses to environmental changes. Much evidence indicates that regulation at the pre-mRNA splicing step is important for flowering time control; however, the components and detailed mechanism underlying this process remain largely unknown. Here, we identified the splicing factor RNA BINDING PROTEIN 45d (RBP45d), a member of the RBP45/47 family in Arabidopsis thaliana. Using sequence comparison and biochemical analysis, we determined that RBP45d is a component of the U1 small nuclear ribonucleoprotein (U1 snRNP) with functions distinct from other family members. RBP45d associates with the U1 snRNP by interacting with pre-mRNA-processing factor 39a (PRP39a) and directly regulates alternative splicing (AS) for a specific set of genes. Plants with loss of RBP45d and PRP39a function exhibited defects in temperature-induced flowering, potentially due to the misregulation of temperature-sensitive AS of FLOWERING LOCUS M as well as the accumulation of the flowering repressor FLOWERING LOCUS C. Taken together, RBP45d is a U1 snRNP component in plants that functions with PRP39a in temperature-mediated flowering.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Ribonucleoproteína Nuclear Pequeña U1 , Empalme Alternativo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolución Molecular , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación , Filogenia , Plantas Modificadas Genéticamente , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
16.
Plant Cell ; 34(12): 4920-4935, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36087009

RESUMEN

In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Microcomputadores , Cromatina/genética , Cromatina/metabolismo , Procesamiento Postranscripcional del ARN/genética
17.
Mol Cell Proteomics ; 22(8): 100608, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356496

RESUMEN

Protein aggregation of amyloid-ß peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-ß, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Proteoma/metabolismo , Detergentes/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Encéfalo/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101980

RESUMEN

In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.


Asunto(s)
Factores de Empalme de ARN/química , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U2/química , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Motivos de Nucleótidos , Factores de Empalme de ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U2/genética
19.
J Biol Chem ; 299(7): 104854, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224962

RESUMEN

Functional depletion of the U1 small nuclear ribonucleoprotein (snRNP) with a 25 nt U1 AMO (antisense morpholino oligonucleotide) may lead to intronic premature cleavage and polyadenylation of thousands of genes, a phenomenon known as U1 snRNP telescripting; however, the underlying mechanism remains elusive. In this study, we demonstrated that U1 AMO could disrupt U1 snRNP structure both in vitro and in vivo, thereby affecting the U1 snRNP-RNAP polymerase II interaction. By performing chromatin immunoprecipitation sequencing for phosphorylation of Ser2 and Ser5 of the C-terminal domain of RPB1, the largest subunit of RNAP polymerase II, we showed that transcription elongation was disturbed upon U1 AMO treatment, with a particular high phosphorylation of Ser2 signal at intronic cryptic polyadenylation sites (PASs). In addition, we showed that core 3'processing factors CPSF/CstF are involved in the processing of intronic cryptic PAS. Their recruitment accumulated toward cryptic PASs upon U1 AMO treatment, as indicated by chromatin immunoprecipitation sequencing and individual-nucleotide resolution CrossLinking and ImmunoPrecipitation sequencing analysis. Conclusively, our data suggest that disruption of U1 snRNP structure mediated by U1 AMO provides a key for understanding the U1 telescripting mechanism.


Asunto(s)
Morfolinos , Oligonucleótidos Antisentido , Precursores del ARN , Ribonucleoproteína Nuclear Pequeña U1 , Morfolinos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Poliadenilación , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Humanos , Células HeLa , Técnicas de Silenciamiento del Gen , Factor de Especificidad de Desdoblamiento y Poliadenilación , Factor de Estimulación del Desdoblamiento/metabolismo , Transcripción Genética/efectos de los fármacos
20.
Chembiochem ; 25(9): e202300864, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38459794

RESUMEN

The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Ribonucleoproteína Nuclear Pequeña U1 , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA