Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
RNA ; 26(5): 613-628, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32111664

RESUMEN

Functions of eukaryotic mRNAs are characterized by intramolecular interactions between their ends. We have addressed the question whether 5' and 3' ends meet by diffusion-controlled encounter "through solution" or by a mechanism involving the RNA backbone. For this purpose, we used a translation system derived from Drosophila embryos that displays two types of 5'-3' interactions: Cap-dependent translation initiation is stimulated by the poly(A) tail and inhibited by Smaug recognition elements (SREs) in the 3' UTR. Chimeric RNAs were made consisting of one RNA molecule carrying a luciferase coding sequence and a second molecule containing SREs and a poly(A) tail; the two were connected via a protein linker. The poly(A) tail stimulated translation of such chimeras even when disruption of the RNA backbone was combined with an inversion of the 5'-3' polarity between the open reading frame and poly(A) segment. Stimulation by the poly(A) tail also decreased with increasing RNA length. Both observations suggest that contacts between the poly(A) tail and the 5' end are established through solution, independently of the RNA backbone. In the same chimeric constructs, SRE-dependent inhibition of translation was also insensitive to disruption of the RNA backbone. Thus, tracking of the backbone is not involved in the repression of cap-dependent initiation. However, SRE-dependent repression was insensitive to mRNA length, suggesting that the contact between the SREs in the 3' UTR and the 5' end of the RNA might be established in a manner that differs from the contact between the poly(A) tail and the cap.


Asunto(s)
Estabilidad del ARN/genética , ARN Mensajero/genética , ARN/genética , Ribosa/química , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Células Eucariotas , Sistemas de Lectura Abierta/genética , Poli A/genética , Biosíntesis de Proteínas/genética , Caperuzas de ARN/genética , Ribosa/genética , Ribosamonofosfatos/química , Ribosamonofosfatos/genética
2.
Nucleic Acids Res ; 45(15): 8901-8915, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911106

RESUMEN

Packaging of DNA into the nucleosome core particle (NCP) is considered to exert constraints to all DNA-templated processes, including base excision repair where Pol ß catalyzes two key enzymatic steps: 5'-dRP lyase gap trimming and template-directed DNA synthesis. Despite its biological significance, knowledge of Pol ß activities on NCPs is still limited. Here, we show that removal of the 5'-dRP block by Pol ß is unaffected by NCP constraints at all sites tested and is even enhanced near the DNA ends. In contrast, strong inhibition of DNA synthesis is observed. These results indicate 5'-dRP gap trimming proceeds unperturbed within the NCP; whereas, gap filling is strongly limited. In the absence of additional factors, base excision repair in NCPs will stall at the gap-filling step.


Asunto(s)
ADN Polimerasa beta/química , Reparación del ADN , Replicación del ADN , ADN/química , Nucleosomas/metabolismo , Ribosamonofosfatos/química , Animales , Sitios de Unión , Clonación Molecular , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Conformación de Ácido Nucleico , Nucleosomas/ultraestructura , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosamonofosfatos/metabolismo , Xenopus laevis/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(36): 11247-51, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305965

RESUMEN

Computational chemistry predicts that atomic motions on the femtosecond timescale are coupled to transition-state formation (barrier-crossing) in human purine nucleoside phosphorylase (PNP). The prediction is experimentally supported by slowed catalytic site chemistry in isotopically labeled PNP (13C, 15N, and 2H). However, other explanations are possible, including altered volume or bond polarization from carbon-deuterium bonds or propagation of the femtosecond bond motions into slower (nanoseconds to milliseconds) motions of the larger protein architecture to alter catalytic site chemistry. We address these possibilities by analysis of chemistry rates in isotope-specific labeled PNPs. Catalytic site chemistry was slowed for both [2H]PNP and [13C, 15N]PNP in proportion to their altered protein masses. Secondary effects emanating from carbon-deuterium bond properties can therefore be eliminated. Heavy-enzyme mass effects were probed for local or global contributions to catalytic site chemistry by generating [15N, 2H]His8-PNP. Of the eight His per subunit, three participate in contacts to the bound reactants and five are remote from the catalytic sites. [15N, 2H]His8-PNP had reduced catalytic site chemistry larger than proportional to the enzymatic mass difference. Altered barrier crossing when only His are heavy supports local catalytic site femtosecond perturbations coupled to transition-state formation. Isotope-specific and amino acid specific labels extend the use of heavy enzyme methods to distinguish global from local isotope effects.


Asunto(s)
Aminoácidos/química , Dominio Catalítico , Histidina/química , Purina-Nucleósido Fosforilasa/química , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Sitios de Unión/genética , Biocatálisis , Isótopos de Carbono/química , Cromatografía Líquida de Alta Presión , Deuterio/química , Guanosina/química , Guanosina/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Marcaje Isotópico , Isótopos/química , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Movimiento (Física) , Isótopos de Nitrógeno/química , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , Ribosamonofosfatos/química , Ribosamonofosfatos/metabolismo , Espectrometría de Masas en Tándem
4.
Biochim Biophys Acta ; 1864(3): 280-282, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26708478

RESUMEN

We studied the influence of the acceptor substrate of transketolase on the activity of the enzyme in the presence of reductants. Ribose-5-phosphate in the presence of cyanoborohydride decreased the transketolase catalytic activity. The inhibition is caused by the loss of catalytic function of the coenzyme-thiamine diphosphate. Similar inhibitory effect was observed in the presence of NADPH. This could indicate its possible regulatory role not only towards transketolase, but also towards the pentose phosphate pathway of carbohydrate metabolism overall, taking into account the fact that it inhibits not only transketolase but also another enzyme of the pentose phosphate pathway--glucose 6-phosphate dehydrogenase [Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle, Biochem. J. 138 (1974) 425-435].


Asunto(s)
Vía de Pentosa Fosfato , Ribosamonofosfatos/química , Tiamina Pirofosfato/química , Transcetolasa/química , Borohidruros/química , Metabolismo de los Hidratos de Carbono , Hígado/química , Hígado/enzimología , NADP/química , Sustancias Reductoras/química , Saccharomyces cerevisiae , Especificidad por Sustrato , Tiamina Pirofosfato/metabolismo , Transcetolasa/antagonistas & inhibidores , Transcetolasa/metabolismo
5.
Microbiology (Reading) ; 163(2): 218-232, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28277197

RESUMEN

Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.


Asunto(s)
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Hifa/crecimiento & desarrollo , Ribosa-Fosfato Pirofosfoquinasa/genética , Esporas Fúngicas/crecimiento & desarrollo , Adenosina Trifosfato/química , Aspergillus nidulans/crecimiento & desarrollo , Eliminación de Gen , Técnicas de Inactivación de Genes , Hifa/genética , Fosforribosil Pirofosfato/biosíntesis , ARN Mensajero/genética , Ribosamonofosfatos/química , Esporas Fúngicas/genética
6.
J Biol Chem ; 290(9): 5226-39, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25568319

RESUMEN

PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/enzimología , Glutaminasa/química , Fosfato de Piridoxal/química , Amoníaco/química , Amoníaco/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Vías Biosintéticas , Dominio Catalítico , Cristalografía por Rayos X , Geobacillus stearothermophilus/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/química , Glutamina/metabolismo , Gliceraldehído 3-Fosfato/química , Gliceraldehído 3-Fosfato/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Estructura Molecular , Mutación , Conformación Proteica , Fosfato de Piridoxal/metabolismo , Ribosamonofosfatos/química , Ribosamonofosfatos/metabolismo , Espectrometría de Masa por Ionización de Electrospray
7.
Biochim Biophys Acta ; 1849(8): 930-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26066980

RESUMEN

In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed.


Asunto(s)
ARN Mensajero/metabolismo , Ribosamonofosfatos/metabolismo , Ribosomas/metabolismo , Anticodón/química , Secuencia de Bases , Sitios de Unión/efectos de los fármacos , Codón/química , Codón/metabolismo , Reactivos de Enlaces Cruzados/química , Hepacivirus/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Ribosamonofosfatos/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Sitio de Iniciación de la Transcripción
8.
Biochemistry ; 54(14): 2323-34, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25790177

RESUMEN

The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded ß-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and ß-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.


Asunto(s)
Adenina Fosforribosiltransferasa/química , Proteínas Arqueales/química , Sulfolobus solfataricus/enzimología , Adenina/química , Adenosina Difosfato/química , Adenosina Monofosfato/química , Dominio Catalítico , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Modelos Moleculares , Fosforribosil Pirofosfato/química , Conformación Proteica , Multimerización de Proteína , Ribosamonofosfatos/química
9.
Bioorg Med Chem ; 23(4): 829-38, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25616343

RESUMEN

2-Deoxy-α-d-ribose-1-phosphate is of great interest as it is involved in the biosynthesis and/or catabolic degradation of several nucleoside analogues of biological and therapeutic relevance. However due to the lack of a stabilising group at its 2-position, it is difficult to synthesize stable prodrugs of this compound. In order to overcome this lack of stability, the synthesis of carbasugar analogues of 2-deoxyribose-1-phosphate was envisioned. Herein the preparation of a series of prodrugs of two carbocyclic analogues of 2-deoxyribose-1-phosphate using the phosphoramidate ProTide technology, along with their biological evaluation against HIV and cancer cell proliferation, is reported.


Asunto(s)
Amidas/química , Amidas/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacología , Ribosamonofosfatos/química , Ribosamonofosfatos/farmacología , Amidas/síntesis química , Fármacos Anti-VIH/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Carba-azúcares/síntesis química , Carba-azúcares/química , Carba-azúcares/farmacología , Línea Celular Tumoral , VIH/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Humanos , Neoplasias/tratamiento farmacológico , Ácidos Fosfóricos/síntesis química , Profármacos , Ribosamonofosfatos/síntesis química
10.
Proc Natl Acad Sci U S A ; 109(16): 6024-9, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474343

RESUMEN

Carbohydrate moieties are important components of natural products, which are often imperative for the solubility and biological activity of the compounds. The aromatic polyketide alnumycin A contains an extraordinary sugar-like 4'-hydroxy-5'-hydroxymethyl-2',7'-dioxane moiety attached via a carbon-carbon bond to the aglycone. Here we have extensively investigated the biosynthesis of the dioxane unit through (13)C labeling studies, gene inactivation experiments and enzymatic synthesis. We show that AlnA and AlnB, members of the pseudouridine glycosidase and haloacid dehalogenase enzyme families, respectively, catalyze C-ribosylation conceivably through Michael-type addition of d-ribose-5-phosphate and dephosphorylation. The ribose moiety may be attached both in furanose (alnumycin C) and pyranose (alnumycin D) forms. The C(1')-C(2') bond of alnumycin C is subsequently cleaved and the ribose unit is rearranged into an unprecedented dioxolane (cis-bicyclo[3.3.0]-2',4',6'-trioxaoctan-3'ß-ol) structure present in alnumycin B. The reaction is catalyzed by Aln6, which belongs to a previously uncharacterized enzyme family. The conversion was accompanied with consumption of O(2) and formation of H(2)O(2), which allowed us to propose that the reaction may proceed via hydroxylation of C1' followed by retro-aldol cleavage and acetal formation. Interestingly, no cofactors could be detected and the reaction was also conducted in the presence of metal chelating agents. The last step is the conversion of alnumycin B into the final end-product alnumycin A catalyzed by Aln4, an NADPH-dependent aldo-keto reductase. This characterization of the dioxane biosynthetic pathway sets the basis for the utilization of C-C bound ribose, dioxolane and dioxane moieties in the generation of improved biologically active compounds.


Asunto(s)
Vías Biosintéticas , Carbohidratos/química , Dioxanos/química , Naftoquinonas/química , Proteínas Bacterianas/metabolismo , Carbono/química , Isótopos de Carbono , Dioxanos/metabolismo , Electroforesis en Gel de Poliacrilamida , Glicósido Hidrolasas/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Hidrolasas/metabolismo , Hidroxilación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Naftoquinonas/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Seudouridina/metabolismo , Ribosa/química , Ribosa/metabolismo , Ribosamonofosfatos/química , Ribosamonofosfatos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
11.
Glycoconj J ; 31(8): 573-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25108762

RESUMEN

D-Ribitol-5-phosphate (Rbt-5-P) is an important metabolite in the pentose phosphate pathway and an integral part of bacterial cell wall polysaccharides, specifically as polyribosyl ribitol phosphate (PRP) in Haemophilus influenzae type b (Hib). The major objective of this study was to investigate whether an antibody specific to Rbt-5-P can recognize the PRP of Hib. D-Ribose-5-phosphate was reacted with proteins in the presence of sodium cyanoborohydride to obtain Rbt-5-P epitopes; 120 h reaction resulted in conjugation of ~30 and ~17 moles of Rbt-5-P/mole of BSA and OVA, respectively, based on decrease in amino groups, MALDI-TOF analyses, an increase in apparent molecular weight (SDS-PAGE) and glycoprotein staining. Immunization of rabbits with Rbt-5-P-BSA conjugate generated antibodies to Rbt-5-P as demonstrated by dot immunoblot and non-competitive ELISA. Homogeneous Rbt-5-P-specific antibody was purified from Rbt-5-P-BSA antiserum subjected to caprylic acid precipitation followed by hapten-affinity chromatography; its affinity constant is 7.1 × 10(8) M(-1). Rbt-5-P antibody showed 100 % specificity to Rbt-5-P, ~230 %, 10 % and 3.4 % cross-reactivity to FMN, riboflavin and FAD, respectively; the antibody showed ~4 % cross-reactivity to D-ribitol and <3 % to other sugars/sugar alcohols. Rbt-5-P-specific antibody recognized Hib conjugate vaccines containing PRP which was inhibited specifically by Rbt-5-P, and also detected Hib cell-surface capsular polysaccharides by immunofluorescence. In conclusion, Rbt-5-P-protein conjugate used as an immunogen elicited antibodies binding to an epitope also present in PRP and Hib bacteria. Rbt-5-P-specific antibody has potential applications in the detection and quantification of free/bound Rbt-5-P and FMN as well as immunological recognition of Hib bacteria and its capsular polysaccharide.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Especificidad de Anticuerpos/inmunología , Cápsulas Bacterianas/inmunología , Mononucleótido de Flavina/inmunología , Vacunas contra Haemophilus/inmunología , Haemophilus influenzae tipo b/inmunología , Pentosafosfatos/inmunología , Polisacáridos Bacterianos/inmunología , Animales , Cromatografía de Afinidad , Reacciones Cruzadas/inmunología , Flavina-Adenina Dinucleótido/inmunología , Haptenos/inmunología , Sueros Inmunes , Inmunohistoquímica , Masculino , Conejos , Ribitol/inmunología , Riboflavina/inmunología , Ribosamonofosfatos/química , Ribosamonofosfatos/metabolismo
12.
Bioorg Med Chem Lett ; 23(9): 2555-9, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23541671

RESUMEN

We report in this Letter the synthesis of prodrugs of 2-fluoro-2-deoxyarabinose-1-phosphate and 2,2-difluoro-2-deoxyribose-1-phosphate. We demonstrate the difficulty of realising a phosphorylation step on the anomeric position of 2-deoxyribose, and we discover that introduction of fluorine atoms on the 2 position of 2-deoxyribose enables the phosphorylation step: in fact, the stability of the prodrugs increases with the degree of 2-fluorination. Stability studies of produgs of 2-fluoro-2-deoxyribose-1-phosphate and 2,2-difluoro-2-deoxyribose-1-phosphate in acidic and neutral conditions were conducted to confirm our observation. Biological evaluation of prodrugs of 2,2-difluoro-2-deoxyribose-1-phosphate for antiviral and cytotoxic activity is reported.


Asunto(s)
Antivirales/síntesis química , Desoxirribonucleótidos/química , Profármacos/síntesis química , Ribosamonofosfatos/química , Animales , Antivirales/farmacología , Antivirales/toxicidad , Línea Celular , Proliferación Celular/efectos de los fármacos , Desoxirribonucleótidos/farmacología , Desoxirribonucleótidos/toxicidad , VIH-1/efectos de los fármacos , VIH-2/efectos de los fármacos , Humanos , Ratones , Profármacos/farmacología , Profármacos/toxicidad , Simplexvirus/efectos de los fármacos , Virus Vaccinia/efectos de los fármacos , Vesiculovirus/efectos de los fármacos
13.
Molecules ; 18(10): 12587-98, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24126376

RESUMEN

Various forms of purine-nucleoside phosphorylase (PNP) were used as catalysts of enzymatic ribosylation of selected fluorescent 8-azapurines. It was found that the recombinant calf PNP catalyzes ribosylation of 2,6-diamino-8-azapurine in a phosphate-free medium, with ribose-1-phosphate as ribose donor, but the ribosylation site is predominantly N7 and N8, with the proportion of N8/N7 ribosylated products markedly dependent on the reaction conditions. Both products are fluorescent. Application of the E. coli PNP gave a mixture of N8 and N9-substituted ribosides. Fluorescence of the ribosylated 2,6-diamino-8-azapurine has been briefly characterized. The highest quantum yield, ~0.9, was obtained for N9-ß-d-riboside (λmax 365 nm), while for N8-ß-d-riboside, emitting at ~430 nm, the fluorescence quantum yield was found to be close to 0.4. Ribosylation of 8-azaguanine with calf PNP as a catalyst goes exclusively to N9. By contrast, the E. coli PNP ribosylates 8-azaGua predominantly at N9, with minor, but highly fluorescent products ribosylated at N8/N7.


Asunto(s)
Azaguanina/análogos & derivados , Azaguanina/síntesis química , Proteínas de Escherichia coli/química , Colorantes Fluorescentes/síntesis química , Purina-Nucleósido Fosforilasa/química , Animales , Biocatálisis , Bovinos , Glicosilación , Cinética , Proteínas Recombinantes/química , Ribosamonofosfatos/química
14.
Biochemistry ; 51(9): 1964-75, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22329805

RESUMEN

Prokaryotic phosphopentomutases (PPMs) are di-Mn(2+) enzymes that catalyze the interconversion of α-D-ribose 5-phosphate and α-D-ribose 1-phosphate at an active site located between two independently folded domains. These prokaryotic PPMs belong to the alkaline phosphatase superfamily, but previous studies of Bacillus cereus PPM suggested adaptations of the conserved alkaline phosphatase catalytic cycle. Notably, B. cereus PPM engages substrates when the active site nucleophile, Thr-85, is phosphorylated. Further, the phosphoenzyme is stable throughout purification and crystallization. In contrast, alkaline phosphatase engages substrates when the active site nucleophile is dephosphorylated, and the phosphoenzyme reaction intermediate is only stably trapped in a catalytically compromised enzyme. Studies were undertaken to understand the divergence of these mechanisms. Crystallographic and biochemical investigations of the PPM(T85E) phosphomimetic variant and the neutral corollary PPM(T85Q) determined that the side chain of Lys-240 underwent a change in conformation in response to active site charge, which modestly influenced the affinity for the small molecule activator α-D-glucose 1,6-bisphosphate. More strikingly, the structure of unphosphorylated B. cereus PPM revealed a dramatic change in the interdomain angle and a new hydrogen bonding interaction between the side chain of Asp-156 and the active site nucleophile, Thr-85. This hydrogen bonding interaction is predicted to align and activate Thr-85 for nucleophilic addition to α-D-glucose 1,6-bisphosphate, favoring the observed equilibrium phosphorylated state. Indeed, phosphorylation of Thr-85 is severely impaired in the PPM(D156A) variant even under stringent activation conditions. These results permit a proposal for activation of PPM and explain some of the essential features that distinguish between the catalytic cycles of PPM and alkaline phosphatase.


Asunto(s)
Bacillus cereus/enzimología , Fosfotransferasas/química , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Bacillus cereus/metabolismo , Sitios de Unión , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Fosfotransferasas/metabolismo , Ribosamonofosfatos/química , Ribosamonofosfatos/metabolismo
15.
J Biol Chem ; 286(10): 8043-8054, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21193409

RESUMEN

Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert α-D-ribose 5-phosphate (ribose 5-phosphate) and α-D-ribose 1-phosphate (ribose 1-phosphate). We investigated the reaction mechanism of Bacillus cereus PPM using a combination of structural and biochemical studies. Four high resolution crystal structures of B. cereus PPM revealed the active site architecture, identified binding sites for the substrate ribose 5-phosphate and the activator α-D-glucose 1,6-bisphosphate (glucose 1,6-bisphosphate), and demonstrated that glucose 1,6-bisphosphate increased phosphorylation of the active site residue Thr-85. The phosphorylation of Thr-85 was confirmed by Western and mass spectroscopic analyses. Biochemical assays identified Mn(2+)-dependent enzyme turnover and demonstrated that glucose 1,6-bisphosphate treatment increases enzyme activity. These results suggest that protein phosphorylation activates the enzyme, which supports an intermolecular transferase mechanism. We confirmed intermolecular phosphoryl transfer using an isotope relay assay in which PPM reactions containing mixtures of ribose 5-[(18)O(3)]phosphate and [U-(13)C(5)]ribose 5-phosphate were analyzed by mass spectrometry. This intermolecular phosphoryl transfer is seemingly counter to what is anticipated from phosphomutases employing a general alkaline phosphatase reaction mechanism, which are reported to catalyze intramolecular phosphoryl transfer. However, the two mechanisms may be reconciled if substrate encounters the enzyme at a different point in the catalytic cycle.


Asunto(s)
Fosfatasa Alcalina , Bacillus cereus/enzimología , Proteínas Bacterianas/química , Glucosa-6-Fosfato/análogos & derivados , Fosfotransferasas/química , Ribosamonofosfatos/química , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato/metabolismo , Manganeso/química , Manganeso/metabolismo , Fosfotransferasas/metabolismo , Ribosamonofosfatos/metabolismo
16.
Nucleic Acids Res ; 38(20): 7308-19, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20631005

RESUMEN

Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Fosforribosilglicinamida-Formiltransferasa/química , Adenosina Trifosfato/química , Sitios de Unión , Dominio Catalítico , Cristalografía , Glicina/química , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Ribosamonofosfatos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Proc Natl Acad Sci U S A ; 106(10): 3704-9, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19237570

RESUMEN

The generation of high levels of new catalytic activities on natural and artificial protein scaffolds is a major goal of enzyme engineering. Here, we used random mutagenesis and selection in vivo to establish a sugar isomerisation reaction on both a natural (beta alpha)(8)-barrel enzyme and a catalytically inert chimeric (beta alpha)(8)-barrel scaffold, which was generated by the recombination of 2 (beta alpha)(4)-half barrels. The best evolved variants show turnover numbers and substrate affinities that are similar to those of wild-type enzymes catalyzing the same reaction. The determination of the crystal structure of the most proficient variant allowed us to model the substrate sugar in the novel active site and to elucidate the mechanistic basis of the newly established activity. The results demonstrate that natural and inert artificial protein scaffolds can be converted into highly proficient enzymes in the laboratory, and provide insights into the mechanisms of enzyme evolution.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Thermotoga maritima/enzimología , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Isomerismo , Ligandos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína , Ribosamonofosfatos/química , Ribosamonofosfatos/metabolismo , Especificidad por Sustrato , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
18.
Biochemistry ; 50(42): 9158-66, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21932786

RESUMEN

The reversible phosphorolysis of uridine to generate uracil and ribose 1-phosphate is catalyzed by uridine phosphorylase and is involved in the pyrimidine salvage pathway. We define the reaction mechanism of uridine phosphorylase from Trypanosoma cruzi by steady-state and pre-steady-state kinetics, pH-rate profiles, kinetic isotope effects from uridine, and solvent deuterium isotope effects. Initial rate and product inhibition patterns suggest a steady-state random kinetic mechanism. Pre-steady-state kinetics indicated no rate-limiting step after formation of the enzyme-products ternary complex, as no burst in product formation is observed. The limiting single-turnover rate constant equals the steady-state turnover number; thus, chemistry is partially or fully rate limiting. Kinetic isotope effects with [1'-(3)H]-, [1'-(14)C]-, and [5'-(14)C,1,3-(15)N(2)]uridine gave experimental values of (α-T)(V/K)(uridine) = 1.063, (14)(V/K)(uridine) = 1.069, and (15,ß-15)(V/K)(uridine) = 1.018, in agreement with an A(N)D(N) (S(N)2) mechanism where chemistry contributes significantly to the overall rate-limiting step of the reaction. Density functional theory modeling of the reaction in gas phase supports an A(N)D(N) mechanism. Solvent deuterium kinetic isotope effects were unity, indicating that no kinetically significant proton transfer step is involved at the transition state. In this N-ribosyl transferase, proton transfer to neutralize the leaving group is not part of transition state formation, consistent with an enzyme-stabilized anionic uracil as the leaving group. Kinetic analysis as a function of pH indicates one protonated group essential for catalysis and for substrate binding.


Asunto(s)
Trypanosoma cruzi/enzimología , Uridina Fosforilasa/química , Uridina Fosforilasa/metabolismo , Animales , Catálisis , Medición de Intercambio de Deuterio , Concentración de Iones de Hidrógeno , Fosforilación , Ribosamonofosfatos/química , Especificidad por Sustrato , Uracilo/química , Uridina/química
19.
Biochemistry ; 50(30): 6549-58, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21707079

RESUMEN

Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 Å resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an α/ß monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is ∼7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.


Asunto(s)
Proteínas Bacterianas/química , Familia de Multigenes , Streptococcus pyogenes/enzimología , Uridina Fosforilasa/química , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Ribosamonofosfatos/química , Electricidad Estática , Especificidad por Sustrato/genética , Uracilo/química , Uridina Fosforilasa/genética
20.
Biochemistry ; 50(51): 11047-57, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22091532

RESUMEN

Spontaneous glycation of bovine heart cytochrome c (cyt c) by the sugar ribose 5-phosphate (R5P) weakens the ability of the heme protein to transfer electrons in the respiratory pathway and to bind to membranes. Trypsin fragmentation studies suggest the preferential sites of glycation include Lys72 and Lys87/88 of a cationic patch involved in the association of the protein with its respiratory chain partners and with cardiolipin-containing membranes. Reaction of bovine cyt c with R5P (50 mM) for 8 h modified the protein in a manner that weakened its ability to transfer electrons to cytochrome oxidase by 60%. An 18 h treatment with R5P decreased bovine cyt c's binding affinity with cardiolipin-containing liposomes by an estimated 8-fold. A similar weaker binding of glycated cyt c was observed with mitoplasts. The reversal of the effects of R5P on membrane binding by ATP further supports an A-site modification. A significant decrease in the rate of spin state change for ferro-cyt c, thought to be due to cardiolipin insertion disrupting the coordination of Met to heme, was found for the R5P-treated cyt c. This change occurred to a greater extent than what can be explained by the permanent attachment of the protein to the liposome. Turbidity changes resulting from the multilamellar liposome fusion that is readily promoted by cyt c binding were not seen for the R5P-glycated cyt c samples. Collectively, these results demonstrate the negative impact that R5P glycation can have on critical electron transfer and membrane association functions of cyt c.


Asunto(s)
Citocromos c/metabolismo , Membranas Mitocondriales/metabolismo , Ribosamonofosfatos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cardiolipinas/metabolismo , Bovinos , Citocromos c/antagonistas & inhibidores , Citocromos c/química , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosilación , Liposomas , Lisina/química , Lisina/metabolismo , Fusión de Membrana , Membranas Mitocondriales/enzimología , Nefelometría y Turbidimetría , Orgánulos/enzimología , Orgánulos/metabolismo , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Ribosamonofosfatos/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA