Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Plant Physiol ; 196(2): 916-930, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140314

RESUMEN

Castor (Ricinus communis L.) is an importance crop cultivated for its oil and economic value. Seed size is a crucial factor that determines crop yield. Gaining insight into the molecular regulatory processes of seed development is essential for the genetic enhancement and molecular breeding of castor. Here, we successfully fine-mapped a major QTL related to seed size, qSS3, to a 180 kb interval on chromosome 03 using F2 populations (DL01×WH11). A 17.6-kb structural variation (SV) was detected through genomic comparison between DL01 and WH11. Analysis of haplotypes showed that the existence of the complete 17.6 kb structural variant may lead to the small seed characteristic in castor. In addition, we found that qSS3 contains the microRNA396b (miR396b) sequence, which is situated within the 17.6 kb SV. The results of our experiment offer additional evidence that miR396-Growth Regulating Factor 4 (GRF4) controls seed size by impacting the growth and multiplication of seed coat and endosperm cells. Furthermore, we found that RcGRF4 activates the expression of YUCCA6 (YUC6), facilitating the production of IAA in seeds and thereby impacting the growth of castor seeds. Our research has discovered a crucial functional module that controls seed size, offering a fresh understanding of the mechanism underlying seed size regulation in castor.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , MicroARNs , Semillas , MicroARNs/genética , MicroARNs/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Ácidos Indolacéticos/metabolismo , Sitios de Carácter Cuantitativo/genética , Ricinus communis/genética , Ricinus communis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ricinus/genética , Ricinus/metabolismo , Ricinus/crecimiento & desarrollo , ARN de Planta/genética , ARN de Planta/metabolismo
2.
BMC Genomics ; 25(1): 670, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965476

RESUMEN

BACKGROUND: The TCP (teosinte branched1/cincinnata/proliferating cell factor) family plays a prominent role in plant development and stress responses. However, TCP family genes have thus far not been identified in castor bean, and therefore an understanding of the expression and functional aspects of castor bean TCP genes is lacking. To identify the potential biological functions of castor bean (RcTCP) TCP members, the composition of RcTCP family members, their basic physicochemical properties, subcellular localizations, interacting proteins, miRNA target sites, and gene expression patterns under stress were assessed. RESULTS: The presence of 20 RcTCP genes on the nine chromosomes of castor bean was identified, all of which possess TCP domains. Phylogenetic analysis indicated a close relationship between RcTCP genes and Arabidopsis AtTCP genes, suggesting potential functional similarity. Subcellular localization experiments confirmed that RcTC01/02/03/10/16/18 are all localized in the nucleus. Protein interaction analysis revealed that the interaction quantity of RcTCP03/06/11 proteins is the highest, indicating a cascade response in the functional genes. Furthermore, it was found that the promoter region of RcTCP genes contains a large number of stress-responsive elements and hormone-induced elements, indicating a potential link between RcTCP genes and stress response functions. qRT-PCR showed that all RcTCP genes exhibit a distinct tissue-specific expression pattern and their expression is induced by abiotic stress (including low temperature, abscisic acid, drought, and high salt). Among them, RcTCP01/03/04/08/09/10/14/15/18/19 genes may be excellent stress-responsive genes. CONCLUSION: We discovered that RcTCP genes play a crucial role in various activities, including growth and development, the stress response, and transcription. This study provides a basis for studying the function of RcTCP gene in castor.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Ricinus communis , Estrés Fisiológico , Estrés Fisiológico/genética , Ricinus communis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica
3.
BMC Plant Biol ; 24(1): 885, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342119

RESUMEN

BACKGROUND: Castor (Ricinus communis L., 2n = 2x = 20) is an important industrial crop, due to its oil is very important to the global special chemical industry. Seed size and seed weight are fundamentally important in determining castor yield, while little is known about it. In this study, QTL analysis and candidate gene mining of castor seed size and seed weight were conducted with composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and marker enrichment strategy in 4 populations, i.e., populations F2, BC1, S1-1 and S1-2, derived from 2 accessions with significant phenotypic differences. RESULTS: In the QTL primary mapping, 2 novel QTL clusters were detected in marker intervals RCM520-RCM76 and RCM915-RCM950. In order to verify their accuracy and to narrow their intervals, QTL remapping was carried out in populations F2 and BC1. Among them, 44 and 30 QTLs underlying seed size and seed weight were detected in F2 population using methods CIM and ICIM-ADD respectively, including 4-9 and 3-5 ones conferring each trait were identified with a phenotypic variation explained ranged from 37.92 to 115.81% and 32.86-45.98% respectively. The remapping results in BC1 population were consistent with those in F2 population. Importantly, 3 QTL clusters (i.e. QTL-cluster1, QTL-cluster2 and QTL-cluster3) were found in marker intervals RCM74-RCM76 (37.1 kb), RCM930-RCM950 (259.8 kb) and RCM918-RCM920 (172.9 kb) respectively; in addition, all of them were detected again, the former one was found in the S1-2 population, and the latter two were found simultaneously in the populations S1-1 and S1-2. Finally, 6 candidate genes (i.e. LOC8266555, LOC8281168, LOC8281151, LOC8259066, LOC8258591 and LOC8270077) were screened in the above QTL clusters, they were differentially expressed in multiple seed tissues of both parents, signifying the potential role in regulating seed size and seed weight. CONCLUSION: The above results not only provide new insights into the genetic structure of seed size and seed weight in castor, but also lay the foundation for the functional identification of these candidate genes.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Semillas , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/anatomía & histología , Ricinus communis/genética , Ricinus communis/crecimiento & desarrollo , Fenotipo , Genes de Plantas , Ricinus/genética
4.
BMC Plant Biol ; 24(1): 493, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831288

RESUMEN

Drought is one of the natural stresses that greatly impact plants. Castor bean (Ricinus communis L.) is an oil crop with high economic value. Drought is one of the factors limiting castor bean growth. The drought resistance mechanisms of castor bean have become a research focus. In this study, we used castor germinating embryos as experimental materials, and screened genes related to drought resistance through physiological measurements, proteomics and metabolomics joint analysis; castor drought-related genes were subjected to transient silencing expression analysis in castor leaves to validate their drought-resistant functions, and heterologous overexpression and backward complementary expression in Arabidopsis thaliana, and analysed the mechanism of the genes' response to the participation of Arabidopsis thaliana in drought-resistance.Three drought tolerance-related genes, RcECP 63, RcDDX 31 and RcA/HD1, were obtained by screening and analysis, and transient silencing of expression in castor leaves further verified that these three genes corresponded to drought stress, and heterologous overexpression and back-complementary expression of the three genes in Arabidopsis thaliana revealed that the function of these three genes in drought stress response.In this study, three drought tolerance related genes, RcECP 63, RcDDX 31 and RcA/HD1, were screened and analysed for gene function, which were found to be responsive to drought stress and to function in drought stress, laying the foundation for the study of drought tolerance mechanism in castor bean.


Asunto(s)
Arabidopsis , Sequías , Ricinus communis , Semillas , Ricinus communis/genética , Ricinus communis/fisiología , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Resistencia a la Sequía
5.
Plant Physiol ; 192(2): 1028-1045, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36883668

RESUMEN

Castor (Ricinus communis L.) is a dicotyledonous oilseed crop that can have either spineless or spiny capsules. Spines are protuberant structures that differ from thorns or prickles. The developmental regulatory mechanisms governing spine formation in castor or other plants have remained largely unknown. Herein, using map-based cloning in 2 independent F2 populations, F2-LYY5/DL01 and F2-LYY9/DL01, we identified the RcMYB106 (myb domain protein 106) transcription factor as a key regulator of capsule spine development in castor. Haplotype analyses demonstrated that either a 4,353-bp deletion in the promoter or a single nucleotide polymorphism leading to a premature stop codon in the RcMYB106 gene could cause the spineless capsule phenotype in castor. Results of our experiments indicated that RcMYB106 might target the downstream gene RcWIN1 (WAX INDUCER1), which encodes an ethylene response factor known to be involved in trichome formation in Arabidopsis (Arabidopsis thaliana) to control capsule spine development in castor. This hypothesis, however, remains to be further tested. Nevertheless, our study reveals a potential molecular regulatory mechanism underlying the spine capsule trait in a nonmodel plant species.


Asunto(s)
Aceite de Ricino , Ricinus communis , Aceite de Ricino/metabolismo , Ricinus/genética , Ricinus/metabolismo , Regulación de la Expresión Génica de las Plantas , Ricinus communis/genética , Ricinus communis/metabolismo
6.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256130

RESUMEN

The length of internodes plays a crucial role in determining the height of the castor plant (Ricinus communis L.). However, the specific mechanisms underlying internode elongation, particularly in the main stem of the castor plant, remain uncertain. To further investigate this, we conducted a study focusing on the internode tissue of the dwarf castor variety 071113, comparing it with the control high-stalk Zhuansihao. Our study included a cytological observation, physiological measurement, transcriptome sequencing, and metabolic determination. Our integrated findings reveal that the dwarf variety 071113 undergoes an earlier lignification development in the main stem and has a more active lignin synthesis pathway during internode intermediate development. In addition, the dwarf variety exhibited lower levels of the plant hormone indole-3-acetic acid (IAA), which had an impact on the development process. Furthermore, we identified specific enzymes and regulators that were enriched in the pathways of the cell cycle, auxin signal transduction, and secondary cell wall synthesis. Using these findings, we developed a model that explained the intermediate secondary growth observed in castor internode elongation and enhanced our comprehension of the dwarfing mechanism of the 071113 variety. This research provides a theoretical groundwork for the future breeding of dwarf castor varieties.


Asunto(s)
Ricinus communis , Ricinus communis/genética , Transcriptoma , Fitomejoramiento , Ricinus , Metaboloma , Aceite de Ricino
7.
New Phytol ; 240(5): 1868-1882, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717216

RESUMEN

Genomic imprinting refers to parent-of-origin-dependent gene expression and primarily occurs in the endosperm of flowering plants, but its functions and epigenetic mechanisms remain to be elucidated in eudicots. Castor bean, a eudicot with large and persistent endosperm, provides an excellent system for studying the imprinting. Here, we identified 131 imprinted genes in developing endosperms and endosperm at seed germination phase of castor bean, involving into the endosperm development, accumulation of storage compounds and specially seed germination. Our results showed that the transcriptional repression of maternal allele of DNA METHYLTRANSFERASE 1 (MET1) may be required for maternal genome demethylation in the endosperm. DNA methylation analysis showed that only a small fraction of imprinted genes was associated with allele-specific DNA methylation, and most of them were closely associated with constitutively unmethylated regions (UMRs), suggesting a limited role for DNA methylation in controlling genomic imprinting. Instead, histone modifications can be asymmetrically deposited in maternal and paternal genomes in a DNA methylation-independent manner to control expression of most imprinted genes. These results expanded our understanding of the occurrence and biological functions of imprinted genes and showed the evolutionary flexibility of the imprinting machinery and mechanisms in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ricinus communis , Endospermo/genética , Endospermo/metabolismo , Ricinus communis/genética , Ricinus communis/metabolismo , Arabidopsis/genética , Epigénesis Genética , Impresión Genómica , Metilación de ADN/genética , Semillas/metabolismo , Alelos , Regulación de la Expresión Génica de las Plantas , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Arabidopsis/metabolismo
8.
BMC Biol ; 20(1): 57, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227267

RESUMEN

BACKGROUND: Understanding the processes governing angiosperm seed growth and development is essential both for fundamental plant biology and for agronomic purposes. Master regulators of angiosperm seed development are expressed in a seed-specific manner. However, it is unclear how this seed specificity of transcription is established. In some vertebrates, DNA methylation valleys (DMVs) are highly conserved and strongly associated with key developmental genes, but comparable studies in plants are limited to Arabidopsis and soybean. Castor bean (Ricinus communis) is a valuable model system for the study of seed biology in dicots and source of economically important castor oil. Unlike other dicots such as Arabidopsis and soybean, castor bean seeds have a relatively large and persistent endosperm throughout seed development, representing substantial structural differences in mature seeds. Here, we performed an integrated analysis of RNA-seq, whole-genome bisulfite sequencing, and ChIP-seq for various histone marks in the castor bean. RESULTS: We present a gene expression atlas covering 16 representative tissues and identified 1162 seed-specific genes in castor bean (Ricinus communis), a valuable model for the study of seed biology in dicots. Upon whole-genome DNA methylation analyses, we detected 32,567 DMVs across five tissues, covering ~33% of the castor bean genome. These DMVs are highly hypomethylated during development and conserved across plant species. We found that DMVs have the potential to activate transcription, especially that of tissue-specific genes. Focusing on seed development, we found that many key developmental regulators of seed/endosperm development, including AGL61, AGL62, LEC1, LEC2, ABI3, and WRI1, were located within DMVs. ChIP-seq for five histone modifications in leaves and seeds clearly showed that the vast majority of histone modification peaks were enriched within DMVs, and their remodeling within DMVs has a critical role in the regulation of seed-specific gene expression. Importantly, further experiment analysis revealed that distal DMVs may act as cis-regulatory elements, like enhancers, to activate downstream gene expression. CONCLUSIONS: Our results point to the importance of DMVs and special distal DMVs behaving like enhancers, in the regulation of seed-specific genes, via the reprogramming of histone modifications within DMVs. Furthermore, these results provide a comprehensive understanding of the epigenetic regulator roles in seed development in castor bean and other important crops.


Asunto(s)
Arabidopsis , Ricinus communis , Animales , Arabidopsis/genética , Ricinus communis/genética , Ricinus communis/metabolismo , Metilación de ADN , Epigénesis Genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Glycine max/genética
9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203263

RESUMEN

Castor (Ricinus communis L.) seeds produce abundant ricinoleic acid during seed maturation, which is important for plant development and human demands. Ricinoleic acid, as a unique hydroxy fatty acid (HFA), possesses a distinct bond structure that could be used as a substitute for fossil fuels. Here, we identified all homologous genes related to glycolysis, hydroxy fatty acid biosynthesis, and triacylglycerol (TAG) accumulation in castor seeds. Furthermore, we investigated their expression patterns globally during five seed development stages. We characterized a total of 66 genes involved in the glycolysis pathway, with the majority exhibiting higher expression levels during the early stage of castor bean seed development. This metabolic process provided abundant acetyl-CoA for fatty acid (FA) biosynthesis. Subsequently, we identified 82 genes involved in the processes of de novo FA biosynthesis and TAG assembly, with the majority exhibiting high expression levels during the middle or late stages. In addition, we examined the expression patterns of the transcription factors involved in carbohydrate and oil metabolism. For instance, RcMYB73 and RcERF72 exhibited high expression levels during the early stage, whereas RcWRI1, RcABI3, and RcbZIP67 showed relatively higher expression levels during the middle and late stages, indicating their crucial roles in seed development and oil accumulation. Our study suggests that the high HFA production in castor seeds is attributed to the interaction of multiple genes from sugar transportation to lipid droplet packaging. Therefore, this research comprehensively characterizes all the genes related to glycolysis, fatty acid biosynthesis, and triacylglycerol (TAG) accumulation in the castor and provides novel insight into exploring the genetic mechanisms underlying seed oil accumulation in the endosperm of castor beans.


Asunto(s)
Ricinus communis , Humanos , Ricinus communis/genética , Semillas/genética , Aceite de Ricino/genética , Ácidos Grasos/genética , Triglicéridos
10.
BMC Plant Biol ; 22(1): 153, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35350998

RESUMEN

BACKGROUND: Seed storage lipids are valuable for human diet and for the sustainable development of mankind. In recent decades, many lipid metabolism genes and pathways have been identified, but the molecular mechanisms that underlie differences in seed oil biosynthesis in species with developed embryo and endosperm are not fully understood. RESULTS: We performed comparative genome and transcriptome analyses of castor bean and rapeseed, which have high seed oil contents, and maize, which has a low seed oil content. These results revealed the molecular underpinnings of the low seed oil content in maize. First of all, transcriptome analyses showed that more than 61% of the lipid- and carbohydrate-related genes were regulated in castor bean and rapeseed, but only 20.1% of the lipid-related genes and 22.5% of the carbohydrate-related genes were regulated in maize. Then, compared to castor bean and rapeseed, fewer lipid biosynthesis genes but more lipid metabolism genes were regulated in the maize embryo. More importantly, most maize genes encoding lipid-related transcription factors, triacylglycerol (TAG) biosynthetic enzymes, pentose phosphate pathway (PPP) and Calvin Cycle proteins were not regulated during seed oil synthesis, despite the presence of many homologs in the maize genome. Additionally, we observed differential regulation of vital oil biosynthetic enzymes and extremely high expression levels of oil biosynthetic genes in castor bean, which were consistent with the rapid accumulation of oil in castor bean developing seeds. CONCLUSIONS: Compared to high-oil seeds (castor bean and rapeseed), less oil biosynthetic genes were regulated during the seed development in low-oil seed (maize). These results shed light on molecular mechanisms of lipid biosynthesis in maize, castor bean, and rapeseed. They can provide information on key target genes that may be useful for future experimental manipulation of oil production in oil plants.


Asunto(s)
Brassica napus , Ricinus communis , Brassica napus/genética , Ricinus communis/genética , Aceites de Plantas/metabolismo , Semillas , Transcriptoma , Zea mays/genética , Zea mays/metabolismo
11.
BMC Plant Biol ; 20(1): 48, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000683

RESUMEN

BACKGROUND: Little is known about the molecular basis of seed size formation in endospermic seed of dicotyledons. The seed of castor bean (Ricinus communis L.) is considered as a model system in seed biology studies because of its persistent endosperms throughout seed development. RESULTS: We compared the size of endosperm and endospermic cells between ZB107 and ZB306 and found that the larger seed size of ZB107 resulted from a higher cell count in the endosperm, which occupy a significant amount of the total seed volume. In addition, fresh weight, dry weight, and protein content of seeds were remarkably higher in ZB107 than in ZB306. Comparative proteomic and transcriptomic analyses were performed between large-seed ZB107 and small-seed ZB306, using isobaric tags for relative and absolute quantification (iTRAQ) and RNA-seq technologies, respectively. A total of 1416 protein species were identified, of which 173 were determined as differentially abundant protein species (DAPs). Additionally, there were 9545 differentially expressed genes (DEGs) between ZB306 and ZB107. Functional analyses revealed that these DAPs and DEGs were mainly involved in cell division and the metabolism of carbohydrates and proteins. CONCLUSIONS: These findings suggest that both cell number and storage-component accumulation are critical for the formation of seed size, providing new insight into the potential mechanisms behind seed size formation in endospermic seeds.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Ricinus communis/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Transcriptoma , Ricinus communis/genética , Ricinus communis/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Perfilación de la Expresión Génica , Proteómica , Semillas/genética , Semillas/metabolismo
12.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952322

RESUMEN

Cellular autophagy is a widely-occurring conserved process for turning over damaged organelles or recycling cytoplasmic contents in cells. Although autophagy-related genes (ATGs) have been broadly identified from many plants, little is known about the potential function of autophagy in mediating plant growth and development, particularly in recycling cytoplasmic contents during seed development and germination. Castor bean (Ricinus communis) is one of the most important inedible oilseed crops. Its mature seed has a persistent and large endosperm with a hard and lignified seed coat, and is considered a model system for studying seed biology. Here, a total of 34 RcATG genes were identified in the castor bean genome and their sequence structures were characterized. The expressional profiles of these RcATGs were examined using RNA-seq and real-time PCR in a variety of tissues. In particular, we found that most RcATGs were significantly up-regulated in the later stage of seed coat development, tightly associated with the lignification of cell wall tissues. During seed germination, the expression patterns of most RcATGs were associated with the decomposition of storage oils. Furthermore, we observed by electron microscopy that the lipid droplets were directly swallowed by the vacuoles, suggesting that autophagy directly participates in mediating the decomposition of lipid droplets via the microlipophagy pathway in germinating castor bean seeds. This study provides novel insights into understanding the potential function of autophagy in mediating seed development and germination.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Genómica/métodos , Ricinus communis/genética , Autofagia/genética , Proteínas Relacionadas con la Autofagia/clasificación , Proteínas Relacionadas con la Autofagia/metabolismo , Ricinus communis/metabolismo , Aceite de Ricino/metabolismo , Endospermo/genética , Endospermo/metabolismo , Germinación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Gotas Lipídicas/metabolismo , Filogenia , Semillas/genética , Semillas/metabolismo
13.
Plant J ; 95(2): 324-340, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29738104

RESUMEN

Long non-coding RNAs (lncRNAs) serve as versatile regulators of plant growth and development. The potential functions and inheritance patterns of lncRNAs, as well as the epigenetic regulation of lncRNA itself, remain largely uncharacterized in plant seeds, especially in the persistent endosperm of the dicotyledons. In this study, we investigated diverse RNA-seq data and catalogued 5356 lncRNAs in castor bean seeds. A small fraction of lncRNAs were transcribed from the same direction as the promoters of protein-coding genes (PCgenes) and exhibited strongly coordinated expression with the nearby PCgene. Co-expression analysis with weighted gene co-expression network analysis (WGCNA) showed these lncRNAs to be involved in differential transcription networks between the embryo and endosperm in the early developing seed. Genomic DNA methylation analyses revealed that the expression level of lncRNAs was tightly linked to DNA methylation and that endosperm hypomethylation could promote the expression of linked lncRNAs. Intriguingly, upon hybridization, most lncRNAs with divergent genome sequences between two parents could be reconciled and were expressed according to their parental genome contribution; however, some deviation in the expression of allelic lncRNAs was observed and found to be partially dependent on parental effects. In triploid endosperm, the expression of most lncRNAs was not dosage sensitive, as only 20 lncRNAs had balanced dosage. Our findings not only demonstrate that lncRNAs play potential roles in regulating the development of castor bean endosperm and embryo, but also provide novel insights into the parental effects, allelic expression and epigenetic regulation of lncRNAs in dicotyledonous seeds.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , ARN Largo no Codificante/genética , Ricinus communis/genética , Metilación de ADN , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Semillas/metabolismo
14.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875738

RESUMEN

The physiological and molecular basis of seed size formation is complex, and the development of seed coat (derived from integument cells) might be a critical factor that determines seed size formation for many endospermic seeds. Castor bean (Ricinus communis L.), a model system of studying seed biology, has large and persistent endosperm with a hard seed coat at maturity. Here, we investigated the potential molecular mechanisms underlying seed size formation in castor bean by comparing the difference between global gene expression within developing seed coat tissues between the large-seed ZB107 and small-seed ZB306. First, we observed the cell size of seed coat and concluded that the large seed coat area of ZB107 resulted from more cell numbers (rather than cell size). Furthermore, we found that the lignin proportion of seed coat was higher in ZB306. An investigation into global gene expression of developing seed coat tissues revealed that 815 genes were up-regulated and 813 were down-regulated in ZB306 relative to ZB107. Interestingly, we found that many genes involved in regulating cell division were up-regulated in ZB107, whereas many genes involved in regulating lignin biosynthesis (including several NAC members, as well as MYB46/83 and MYB58/63) and in mediating programmed cell death (such as CysEP1 and ßVPE) were up-regulated in ZB306. Furthermore, the expression patterns of the genes mentioned above indicated that the lignification of seed coat tissues was enhanced and occurred earlier in the developing seeds of ZB306. Taken together, we tentatively proposed a potential scenario for explaining the molecular mechanisms of seed coat governing seed size formation in castor bean by increasing the cell number and delaying the onset of lignification in seed coat tissues in large-seed ZB107. This study not only presents new information for possible modulation of seed coat related genes to improve castor seed yield, but also provides new insights into understanding the molecular basis of seed size formation in endospermic seeds with hard seed coat.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Ricinus communis/anatomía & histología , Semillas/anatomía & histología , Ricinus communis/genética , Ricinus communis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Lignina/biosíntesis , Filogenia , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ADN
15.
Plant Cell Physiol ; 59(1): 205-214, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29149288

RESUMEN

While plant oils are an important source of food, plants also produce oils containing specialized fatty acids with chemical and physical properties valued in industry. Ricinoleic acid, a hydroxy fatty acid (HFA) produced in the seed of castor (Ricinus communis), is of particular value, with a wide range of applications. Since castor cultivation is currently successful only in tropical climates, and because castor seed contain the toxin ricin, there are ongoing efforts to develop a temperate crop capable of HFA biosynthesis. In castor, ricinoleic acid is incorporated into triacylglycerol (TAG) which accumulates in the seed lipid droplets. Research in the model plant Arabidopsis (Arabidopsis thaliana) has successfully produced HFA constituting 30% of the total seed oil, but this is far short of the level required to engineer commercially viable crops. Strategies to increase HFA have centered on co-expression of castor TAG biosynthesis enzymes. However, since lipid droplets are the location of neutral lipid storage, manipulating droplets offers an alternative method to increase oil that contains specialized fatty acids. The Arabidopsis Seipin1 protein modulates TAG accumulation by affecting lipid droplet size. Here, we overexpress Seipin1 in a hydroxylase-expressing Arabidopsis line, increasing seed HFA by 62% and proportionally increasing total oil. Increased seed oil was concomitant with a 22% increase in single seed weight and a 69% increase in harvest weight, while seed germination rose by 45%. Because Seipin1 function is unaffected by the structure of the HFA, these results demonstrate a novel strategy that may increase accumulation of many specialized seed oils.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Ricinoleicos/metabolismo , Semillas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ricinus communis/genética , Ricinus communis/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Triglicéridos/metabolismo
16.
Plant Physiol ; 171(2): 1242-58, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208275

RESUMEN

Investigations of genomic DNA methylation in seeds have been restricted to a few model plants. The endosperm genomic DNA hypomethylation has been identified in angiosperm, but it is difficult to dissect the mechanism of how this hypomethylation is established and maintained because endosperm is ephemeral and disappears with seed development in most dicots. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), endosperm is persistent throughout seed development, providing an excellent model in which to dissect the mechanism of endosperm genomic hypomethylation in dicots. We characterized the DNA methylation-related genes encoding DNA methyltransferases and demethylases and analyzed their expression profiles in different tissues. We examined genomic methylation including CG, CHG, and CHH contexts in endosperm and embryo tissues using bisulfite sequencing and revealed that the CHH methylation extent in endosperm and embryo was, unexpectedly, substantially higher than in previously studied plants, irrespective of the CHH percentage in their genomes. In particular, we found that the endosperm exhibited a global reduction in CG and CHG methylation extents relative to the embryo, markedly switching global gene expression. However, CHH methylation occurring in endosperm did not exhibit a significant reduction. Combining with the expression of 24-nucleotide small interfering RNAs (siRNAs) mapped within transposable element (TE) regions and genes involved in the RNA-directed DNA methylation pathway, we demonstrate that the 24-nucleotide siRNAs played a critical role in maintaining CHH methylation and repressing the activation of TEs in persistent endosperm development. This study discovered a novel genomic DNA methylation pattern and proposes the potential mechanism occurring in dicot seeds with persistent endosperm.


Asunto(s)
Metilación de ADN/genética , Endospermo/genética , Perfilación de la Expresión Génica , Genoma de Planta , Ricinus communis/embriología , Ricinus communis/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Genéticos , ARN de Planta/genética , ARN de Planta/metabolismo
17.
Plant Physiol ; 171(1): 179-91, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27208047

RESUMEN

Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/metabolismo , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Ácidos Grasos/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ricinus communis/genética , Elongasas de Ácidos Grasos , Ácidos Grasos/análisis , Germinación/genética , Fenotipo , Aceites de Plantas/análisis , Plantas Modificadas Genéticamente/genética , Plastidios/genética , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba
18.
Genet Mol Res ; 16(3)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28973755

RESUMEN

Castor bean (Ricinus communis L.) is a tropical plant of great commercial interest and a potential source of biodiesel. The development of genetically improved cultivars with high amounts of oil in the seeds and low ricin toxicity is crucial to increase the productivity of this crop. The use of TRAP (target region amplification polymorphism) markers to develop elite lineages and study genetic divergence is fundamental to advance the genetic improvement of this species. The goal of this study was to evaluate the genetic divergence among 40 elite lineages of R. communis, which belong to the NBIO-UFRB Genetic Improvement Program, using TRAP markers involved in the biosynthesis of oil and ricin. Total DNA was extracted and quantified from the leaf tissue of the castor bean plants, and 70 TRAP combinations (fixed and arbitrary primers) were used to genotype the 40 lineages. Of the 580 fragments amplified, 335 were polymorphic (58%). The genetic dissimilarity among the lineages was calculated by the Jaccard dissimilarity index using the UPGMA grouping method. A dendrogram was generated, and four groups formed, showing divergence among the elite lineages that favors selection. The TRAP molecular markers were efficient at characterizing the genetic variability among the lineages and, because TRAP markers are functional markers involved in the biosynthesis of oil and ricin, they are important when studying the association between a marker and a candidate gene.


Asunto(s)
Evolución Molecular , Polimorfismo Genético , Ricinus communis/genética , Modelos Genéticos
19.
Plant J ; 81(5): 810-21, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25603894

RESUMEN

The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.


Asunto(s)
Genoma de Planta/genética , Jatropha/genética , Ricinus communis/genética , Secuencia de Bases , Biocombustibles , Mapeo Cromosómico , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Genotipo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN , Transcriptoma
20.
Mol Genet Genomics ; 291(2): 775-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26589420

RESUMEN

This article addresses the bioinformatic, molecular genetic, and cytogenetic study of castor bean (Ricinus communis, 2n = 20), which belongs to the monotypic Ricinus genus within the Euphorbiaceae family. Because castor bean chromosomes are small, karyotypic studies are difficult. However, the use of DNA repeats has yielded new prospects for karyotypic research and genome characterization. In the present study, major DNA repeat sequences were identified, characterized and localized on mitotic metaphase and meiotic pachytene chromosomes. Analyses of the nucleotide composition, curvature models, and FISH localization of the rcsat39 repeat suggest that this repeat plays a key role in building heterochromatic arrays in castor bean. Additionally, the rcsat390 sequences were determined to be chromosome-specific repeats located in the pericentromeric region of mitotic chromosome A (pachytene chromosome 1). The localization of rcsat39, rcsat390, 45S and 5S rDNA genes allowed for the development of cytogenetic landmarks for chromosome identification. General questions linked to heterochromatin formation, DNA repeat distribution, and the evolutionary emergence of the genome are discussed. The article may be of interest to biologists studying small genome organization and short monomer DNA repeats.


Asunto(s)
ADN de Plantas/genética , Genoma de Planta , Secuencias Repetitivas de Ácidos Nucleicos/genética , Ricinus communis/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Análisis Citogenético , ADN Ribosómico/genética , Hibridación Fluorescente in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA