Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Annu Rev Biochem ; 86: 845-872, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301742

RESUMEN

Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and


Asunto(s)
Optogenética/métodos , Proteínas de Plantas/química , Retinoides/química , Rodopsinas Microbianas/química , Rodopsinas Sensoriales/química , Chlorophyta/clasificación , Chlorophyta/genética , Chlorophyta/metabolismo , Evolución Molecular , Expresión Génica , Luz , Fototransducción , Potenciales de la Membrana/fisiología , Modelos Moleculares , Procesos Fotoquímicos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Retinoides/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo
2.
Hum Genet ; 140(8): 1143-1156, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33974130

RESUMEN

Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Mucosa Intestinal/metabolismo , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Polimorfismo de Nucleótido Simple , Proteínas Qa-SNARE/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Distrofias Retinianas/genética , Anciano , Anciano de 80 o más Años , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Autopsia , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Hereditarias del Ojo/patología , Femenino , Regulación de la Expresión Génica , Homocigoto , Humanos , Mucosa Intestinal/patología , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/patología , Ratones , Ratones Noqueados , Microvellosidades/genética , Microvellosidades/metabolismo , Mucolipidosis/metabolismo , Mucolipidosis/patología , Fenotipo , Proteínas Qa-SNARE/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patología , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Secuenciación del Exoma
3.
J Cell Sci ; 132(15)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31296556

RESUMEN

Rab11 is essential for polarized post-Golgi vesicle trafficking to photosensitive membrane rhabdomeres in Drosophila photoreceptors. Here, we found that Parcas (Pcs), recently shown to have guanine nucleotide exchange (GEF) activity toward Rab11, co-localizes with Rab11 on the trans-side of Golgi units and post-Golgi vesicles at the base of the rhabdomeres in pupal photoreceptors. Pcs fused with the electron micrography tag APEX2 localizes on 150-300 nm vesicles at the trans-side of Golgi units, which are presumably fly recycling endosomes. Loss of Pcs impairs Rab11 localization on the trans-side of Golgi units and induces the cytoplasmic accumulation of post-Golgi vesicles bearing rhabdomere proteins, as observed in Rab11 deficiency. In contrast, loss of Rab11-specific subunits of the TRAPPII complex, another known Rab11-GEF, does not cause any defects in eye development nor the transport of rhabdomere proteins; however, simultaneous loss of TRAPPII and Pcs results in severe defects in eye development. These results indicate that both TRAPPII and Pcs are required for eye development, but Pcs functions as the predominant Rab11-GEF for post-Golgi transport to photosensitive membrane rhabdomeres.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsinas Sensoriales/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte de Proteínas , Rodopsinas Sensoriales/genética , Proteínas de Unión al GTP rab/genética
4.
Hum Mol Genet ; 26(24): 4896-4905, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29036441

RESUMEN

Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of dominant retinitis pigmentosa (RP), a type of inherited blindness caused by the dysfunction and death of photoreceptor cells. The P23H mutation, the most frequent single cause of RP in the USA, causes rhodopsin misfolding and induction of the unfolded protein response (UPR), an adaptive ER stress response and signalling network that aims to enhance the folding and degradation of misfolded proteins to restore proteostasis. Prolonged UPR activation, and in particular the PERK branch, can reduce protein synthesis and initiate cell death through induction of pro-apoptotic pathways. Here, we investigated the effect of pharmacological PERK inhibition on retinal disease process in the P23H-1 transgenic rat model of retinal degeneration. PERK inhibition with GSK2606414A led to an inhibition of eIF2α phosphorylation, which correlated with reduced ERG function and decreased photoreceptor survival at both high and low doses of PERK inhibitor. Additionally, PERK inhibition increased the incidence of inclusion formation in cultured cells overexpressing P23H rod opsin, and increased rhodopsin aggregation in the P23H-1 rat retina, suggesting enhanced P23H misfolding and aggregation. In contrast, treatment of P23H-1 rats with an inhibitor of eIF2α phosphatase, salubrinal, led to improved photoreceptor survival. Collectively, these data suggest the activation of PERK is part of a protective response to mutant rhodopsin that ultimately limits photoreceptor cell death.


Asunto(s)
Retinitis Pigmentosa/metabolismo , Rodopsinas Sensoriales/metabolismo , eIF-2 Quinasa/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Línea Celular Transformada , Línea Celular Tumoral , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Humanos , Indoles/farmacología , Pliegue de Proteína , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Rodopsinas Sensoriales/genética , Estrés Fisiológico/fisiología , Respuesta de Proteína Desplegada , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/genética
5.
Protein Expr Purif ; 151: 1-8, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29793033

RESUMEN

Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied for their structure and function. These retinal-binding proteins can be divided into two types. Type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. The two primary functions of type I rhodopsin are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin with a specific function of photosensory transduction. ASR is expressed at moderate levels in Escherichia coli, but its expression level is lower compared to the general green light absorbing proteorhodopsin (GPR). In this study, full-length ASR was used to test the influence of codon usage on expression E. coli. Seven amino acids at the N-terminal region of ASR after the Met start codon were changed randomly using designed primers, which allowed for 8192 different nucleotide combinations. The codon changes were screened for the preferable codons that resulted in higher expression yield. Among the 57 selected mutations, 24 color-enhanced E. coli colonies contained ASR proteins, and they expressed ASR at a higher level than the bacteria with wild-type ASR codon usage. This result strongly suggests that the specific codon usage of only the N-terminal portion of a protein can increase the expression level of the entire protein.


Asunto(s)
Anabaena/genética , Proteínas Bacterianas/metabolismo , Codón , Proteínas de la Membrana/metabolismo , Rodopsinas Sensoriales/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Luz , Proteínas de la Membrana/genética , Mutación , Conformación Proteica , Rodopsinas Sensoriales/genética
6.
Faraday Discuss ; 207(0): 55-75, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29388996

RESUMEN

Anabaena sensory rhodopsin (ASR) is a particular microbial retinal protein for which light-adaptation leads to the ability to bind both the all-trans, 15-anti (AT) and the 13-cis, 15-syn (13C) isomers of the protonated Schiff base of retinal (PSBR). In the context of obtaining insight into the mechanisms by which retinal proteins catalyse the PSBR photo-isomerization reaction, ASR is a model system allowing to study, within the same protein, the protein-PSBR interactions for two different PSBR conformers at the same time. A detailed analysis of the vibrational spectra of AT and 13C, and their photo-products in wild-type ASR obtained through femtosecond (pump-) four-wave-mixing is reported for the first time, and compared to bacterio- and channelrhodopsin. As part of an extensive study of ASR mutants with blue-shifted absorption spectra, we present here a detailed computational analysis of the origin of the mutation-induced blue-shift of the absorption spectra, and identify electrostatic interactions as dominating steric effects that would entail a red-shift. The excited state lifetimes and isomerization reaction times (IRT) for the three mutants V112N, W76F, and L83Q are studied experimentally by femtosecond broadband transient absorption spectroscopy. Interestingly, in all three mutants, isomerization is accelerated for AT with respect to wild-type ASR, and this the more, the shorter the wavelength of maximum absorption. On the contrary, the 13C photo-reaction is slightly slowed down, leading to an inversion of the ESLs of AT and 13C, with respect to wt-ASR, in the blue-most absorbing mutant L83Q. Possible mechanisms for these mutation effects, and their steric and electrostatic origins are discussed.


Asunto(s)
Anabaena/genética , Mutación Puntual , Rodopsinas Sensoriales/genética , Procesos Fotoquímicos , Rodopsinas Sensoriales/química
7.
Biophys J ; 111(5): 963-72, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27602724

RESUMEN

Microbial rhodopsins are light-activated, seven-α-helical, retinylidene transmembrane proteins that have been identified in thousands of organisms across archaea, bacteria, fungi, and algae. Although they share a high degree of sequence identity and thus similarity in structure, many unique functions have been discovered and characterized among them. Some function as outward proton pumps, some as inward chloride pumps, whereas others function as light sensors or ion channels. Unique among the microbial rhodopsins characterized thus far, Anabaena sensory rhodopsin (ASR) is a photochromic sensor that interacts with a soluble 14-kDa cytoplasmic transducer that is encoded on the same operon. The sensor itself stably interconverts between all-trans-15-anti and 13-cis-15-syn retinal forms depending on the wavelength of illumination, although only the former participates in a photocycle with a signaling M intermediate. A mutation in the cytoplasmic half-channel of the protein, replacing Asp217 with Glu (D217E), results in the creation of a light-driven, single-photon, inward proton transporter. We present the 2.3 Å structure of dark-adapted D217E ASR, which reveals significant changes in the water network surrounding Glu217, as well as a shift in the carbon backbone near retinal-binding Lys210, illustrating a possible pathway leading to the protonation of Glu217 in the cytoplasmic half-channel, located 15 Å from the Schiff base. Crystallographic evidence for the protonation of nearby Glu36 is also discussed, which was described previously by Fourier transform infrared spectroscopy analysis. Finally, two histidine residues near the extracellular surface and their possible role in proton uptake are discussed.


Asunto(s)
Rodopsinas Sensoriales/química , Anabaena , Sitios de Unión , Cristalografía , Citoplasma , Escherichia coli , Enlace de Hidrógeno , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Relación Estructura-Actividad
8.
Biophys J ; 110(11): 2302-2304, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27233115

RESUMEN

Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Criptófitas , Rodopsinas Sensoriales/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/genética , Cationes Monovalentes/metabolismo , Chlorophyta , Evolución Molecular , Células HEK293 , Humanos , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Luz , Técnicas de Placa-Clamp , Polinucleótidos/genética , Polinucleótidos/metabolismo , Protones , Rodopsinas Sensoriales/genética , Sodio/metabolismo
9.
Biochim Biophys Acta ; 1837(5): 578-88, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23831435

RESUMEN

The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein-protein interactions. Indeed, the structure of these proteins will determine both their function and interaction partners. A detailed understanding of the proximity and orientation of pivotal functional groups can reveal the molecular mechanistic basis for the activity of a protein. Together with X-ray crystallography and electron microscopy, NMR spectroscopy plays an important role in solving three-dimensional structures of proteins at atomic resolution. In the challenging field of membrane proteins, retinal-binding proteins are often employed as model systems and prototypes to develop biophysical techniques for the study of structural and functional mechanistic aspects. The recent determination of two 3D structures of seven-helical trans-membrane retinal proteins by solution-state NMR spectroscopy highlights the potential of solution NMR techniques in contributing to our understanding of membrane proteins. This review summarizes the multiple strategies available for expression of isotopically labeled membrane proteins. Different environments for mimicking lipid bilayers will be presented, along with the most important NMR methods and labeling schemes used to generate high-quality NMR spectra. The article concludes with an overview of types of conformational restraints used for generation of high-resolution structures of membrane proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Asunto(s)
Halorrodopsinas/química , Membrana Dobles de Lípidos/química , Modelos Moleculares , Retinaldehído/química , Rodopsina/química , Rodopsinas Sensoriales/química , Isótopos de Carbono , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Pichia/genética , Pichia/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retinaldehído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo
10.
Mol Microbiol ; 93(3): 403-14, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24798792

RESUMEN

In 2003, Anabaena sensory rhodopsin (ASR), a membrane-bound light sensor protein, was discovered in cyanobacteria. Since then, a large number of functions have been described for ASR, based on protein biochemical and biophysical studies. However, no study has determined the in vivo mechanism of photosensory transduction for ASR and its transducer protein (ASRT). Here, we aimed to determine the role of ASRT in physiological photo-regulation. ASRT is known to be related to photochromism, because it regulates the expression of phycocyanin (cpc-gene) and phycoerythrocyanin (pec gene), two major proteins of the phycobilisome in cyanobacteria. By examining wild type and knockout mutant Anabaena cells, we showed that ASRT repressed the expression of these two genes. We also demonstrated physical interactions between ASRT, ASR, and the promoter regions of cpc, pec, kaiABC (circadian clock gene) and the asr operon, both in vitro and in vivo. Binding assays indicated that ASRT had different sites of interaction for binding to ASR and DNA promoter regions. ASRT also influenced the retinal re-isomerization rate in dark through a physical interaction with ASR, and it regulated reporter gene expression in vivo. These results suggested that ASRT relayed the photosignal from ASR and directly regulated gene expression.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Fototransducción , Ficobilinas/genética , Ficocianina/genética , Rodopsinas Sensoriales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Isomerismo , Luz , Proteínas de la Membrana/metabolismo , Operón , Ficobilisomas/metabolismo , Regiones Promotoras Genéticas , Multimerización de Proteína , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/genética
11.
Proc Natl Acad Sci U S A ; 109(27): 10873-8, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22733734

RESUMEN

We have developed an approach for determining NMR structures of proteins over 20 kDa that utilizes sparse distance restraints obtained using transverse relaxation optimized spectroscopy experiments on perdeuterated samples to guide RASREC Rosetta NMR structure calculations. The method was tested on 11 proteins ranging from 15 to 40 kDa, seven of which were previously unsolved. The RASREC Rosetta models were in good agreement with models obtained using traditional NMR methods with larger restraint sets. In five cases X-ray structures were determined or were available, allowing comparison of the accuracy of the Rosetta models and conventional NMR models. In all five cases, the Rosetta models were more similar to the X-ray structures over both the backbone and side-chain conformations than the "best effort" structures determined by conventional methods. The incorporation of sparse distance restraints into RASREC Rosetta allows routine determination of high-quality solution NMR structures for proteins up to 40 kDa, and should be broadly useful in structural biology.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Genómica/métodos , Proteínas de Unión a Maltosa/química , Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsinas Sensoriales/química , Soluciones/química , Algoritmos , Animales , Cristalografía por Rayos X , Humanos , Proteínas de Unión a Maltosa/genética , Peso Molecular , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Rodopsinas Sensoriales/genética
12.
Biochemistry ; 53(37): 5923-9, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25162914

RESUMEN

Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.


Asunto(s)
Halorrodopsinas/química , Histidina/química , Rodopsinas Sensoriales/química , Halobacterium salinarum/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Mutagénesis Sitio-Dirigida , Isótopos de Nitrógeno , Protones , Bases de Schiff/química , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
13.
BMC Evol Biol ; 14: 240, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25424626

RESUMEN

BACKGROUND: Insect compound eyes are composed of ommatidia, which contain photoreceptor cells that are sensitive to different wavelengths of light defined by the specific rhodopsin proteins that they express. The fruit fly Drosophila melanogaster has several different ommatidium types that can be localised to specific retinal regions, such as the dorsal rim area (DRA), or distributed stochastically in a mosaic across the retina, like the 'pale' and 'yellow' types. Variation in these ommatidia patterns very likely has important implications for the vision of insects and could underlie behavioural and environmental adaptations. However, despite the detailed understanding of ommatidia specification in D. melanogaster, the extent to which the frequency and distribution of the different ommatidium types vary between sexes, strains and species of Drosophila is not known. RESULTS: We investigated the frequency and distribution of ommatidium types based on rhodopsin protein expression, and the expression levels of rhodopsin transcripts in the eyes of both sexes of different strains of D. melanogaster, D. simulans and D. mauritiana. We found that while the number of DRA ommatidia was invariant, Rh3 expressing ommatidia were more frequent in the larger eyes of females compared to the males of all species analysed. The frequency and distribution of ommatidium types also differed between strains and species. The D. simulans strain ZOM4 has the highest frequency of Rh3 expressing ommatidia, which is associated with a non-stochastic patch of pale and odd-coupled ommatidia in the dorsal-posterior of their eyes. CONCLUSIONS: Our results show that there is striking variation in the frequency and distribution of ommatidium types between sexes, strains and species of Drosophila. This suggests that evolutionary changes in the underlying regulatory mechanisms can alter the distribution of ommatidium types to promote or restrict their expression in specific regions of the eye within and between species, and that this could cause differences in vision among these flies.


Asunto(s)
Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila/clasificación , Drosophila/genética , Rodopsinas Sensoriales/genética , Animales , Evolución Biológica , Drosophila/fisiología , Drosophila melanogaster/fisiología , Femenino , Masculino , Retina/metabolismo , Caracteres Sexuales , Especificidad de la Especie
14.
PLoS Comput Biol ; 8(2): e1002357, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319431

RESUMEN

The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification. Photoreceptors (PRs) are organized in bundles of eight cells with two major types - inner PRs involved in color vision and outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh): inner PRs express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K(50) homeodomain protein Dve is a key repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network.


Asunto(s)
Drosophila/fisiología , Modelos Genéticos , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsinas Sensoriales/fisiología , Animales , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Células Fotorreceptoras de Invertebrados/metabolismo , Reproducibilidad de los Resultados , Retina/citología , Rodopsinas Sensoriales/análisis , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Procesos Estocásticos
15.
J Phys Chem B ; 127(37): 7872-7886, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37694950

RESUMEN

Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.


Asunto(s)
Bacteriorodopsinas , Rodopsinas Sensoriales , Rodopsinas Sensoriales/genética , Bases de Schiff , Rodopsinas Microbianas/genética
16.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532685

RESUMEN

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Asunto(s)
Proteínas Arqueales , Halobacteriaceae , Rodopsinas Sensoriales , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transducción de Señal , Proteínas Arqueales/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 106(26): 10823-8, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19528650

RESUMEN

Most neurotransmission is mediated by action potentials, whereas sensory neurons propagate electrical signals passively and release neurotransmitter in a graded manner. Here, we demonstrate that Caenorhabditis elegans neuromuscular junctions release neurotransmitter in a graded fashion. When motor neurons were depolarized by light-activation of channelrhodopsin-2, the evoked postsynaptic current scaled with the strength of the stimulation. When motor neurons were hyperpolarized by light-activation of halorhodopsin, tonic release of synaptic vesicles was decreased. These data suggest that both evoked and tonic neurotransmitter release is graded in response to membrane potential. Acetylcholine synapses are depressed by high-frequency stimulation, in part due to desensitization of the nicotine-sensitve ACR-16 receptor. By contrast, GABA synapses facilitate before becoming depressed. Graded transmission and plasticity confer a broad dynamic range to these synapses. Graded release precisely transmits stimulation intensity, even hyperpolarizing inputs. Synaptic plasticity alters the balance of excitatory and inhibitory inputs into the muscle in a use-dependent manner.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Unión Neuromuscular/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Estimulación Eléctrica , Potenciales Evocados/fisiología , Potenciales Evocados/efectos de la radiación , Luz , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microscopía Fluorescente , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/fisiología , Neurotransmisores/metabolismo , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Ácido gamma-Aminobutírico/metabolismo
18.
Biochemistry ; 50(15): 3170-80, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21401124

RESUMEN

Sensory rhodopsin II (SRII) is a negative phototaxis receptor containing retinal as its chromophore, which mediates the avoidance of blue light. The signal transduction is initiated by the photoisomerization of the retinal chromophore, resulting in conformational changes of the protein which are transmitted to a transducer protein. To gain insight into the SRII sensing mechanism, we employed time-resolved ultraviolet resonance Raman spectroscopy monitoring changes in the protein structure in the picosecond time range following photoisomerization. We used a 450 nm pump pulse to initiate the SRII photocycle and two kinds of probe pulses with wavelengths of 225 and 238 nm to detect spectral changes in the tryptophan and tyrosine bands, respectively. The observed spectral changes of the Raman bands are most likely due to tryptophan and tyrosine residues located in the vicinity of the retinal chromophore, i.e., Trp76, Trp171, Tyr51, or Tyr174. The 225 nm UVRR spectra exhibited bleaching of the intensity for all the tryptophan bands within the instrumental response time, followed by a partial recovery with a time constant of 30 ps and no further changes up to 1 ns. In the 238 nm UVRR spectra, a fast recovering component was observed in addition to the 30 ps time constant component. A comparison between the spectra of the WT and Y174F mutant of SRII indicates that Tyr174 changes its structure and/or environment upon chromophore photoisomerization. These data represent the first real-time observation of the structural change of Tyr174, of which functional importance was pointed out previously.


Asunto(s)
Halobacteriaceae , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Tirosina/química , Halorrodopsinas/genética , Mutación , Rodopsinas Sensoriales/genética , Espectrometría Raman , Factores de Tiempo , Vibración
19.
Biochemistry ; 50(33): 7177-83, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21774470

RESUMEN

Phoborhodopsin from Halobacterium salinarum (salinarum phoborhodopsin, spR also called HsSR II) is a photoreceptor for the negative phototaxis of the bacterium. A unique feature of spR is the formation of a shorter wavelength photoproduct, P480, observed at liquid nitrogen temperature beside the K intermediate. Formation of similar photoproduct has not been reported in the other microbial rhodopsins. This photoproduct showed its maximum absorbance wavelength (λ(max)) at 482 nm and can thermally revert back to spR above -160 °C. It was revealed that P480 is a photoproduct of K intermediate by combination of an irradiation and warming experiment. Fourier transform infrared (FTIR) difference spectrum of P480 from spR in C-C stretching vibration region showed similar features with that of K intermediate, suggesting that P480 has a 13-cis-retinal chromophore. The appearance of a broad positive band at 1214 cm(-1) in the P480-spR spectrum suggested that configuration around C9═C10 likely be different between P480 and K intermediate. Vibrational bands in HOOP region (1035 to 900 cm(-1)) suggested that the chromophore distortion in K intermediate was largely relaxed in P480. The amount of P480 formed by the irradiation was greatly decreased by amino acid replacement of S201 with T, suggesting S201 was involved in the formation of P480. According to the crystal structure of pharaonis phoborhodopsin (ppR), a homologue of spR found in Natronomonas pharaonis, S201 should locate near the C14 of retinal chromophore. Thus, the interaction between S201 and C14 might be the main factor affecting formation of P480.


Asunto(s)
Aminoácidos/metabolismo , Halorrodopsinas/metabolismo , Natronobacterium/metabolismo , Fotoquímica , Retinaldehído/metabolismo , Rodopsinas Sensoriales/metabolismo , Sustitución de Aminoácidos , Aminoácidos/genética , Diterpenos , Halorrodopsinas/genética , Mutación/genética , Unión Proteica , Rodopsinas Sensoriales/genética , Espectroscopía Infrarroja por Transformada de Fourier
20.
Proc Natl Acad Sci U S A ; 105(42): 16159-64, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18852467

RESUMEN

Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.


Asunto(s)
Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Transducción de Señal , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Bases de Schiff/química , Rodopsinas Sensoriales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA