Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.465
Filtrar
1.
Annu Rev Neurosci ; 42: 129-147, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30786225

RESUMEN

Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects-crickets, grasshoppers, and fruit flies-reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems.


Asunto(s)
Cortejo , Insectos/fisiología , Patrones de Reconocimiento Fisiológico/fisiología , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología , Estructuras Animales/fisiología , Animales , Drosophila/fisiología , Femenino , Predicción , Saltamontes/fisiología , Gryllidae/fisiología , Masculino , Preferencia en el Apareamiento Animal/fisiología , Órganos de los Sentidos/fisiología , Especificidad de la Especie , Temperatura , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 120(37): e2306659120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669362

RESUMEN

Chemical signals from conspecifics are essential in insect group formation and maintenance. Migratory locusts use the aggregation pheromone 4-vinylanisole (4VA), specifically released by gregarious locusts, to attract and recruit conspecific individuals, leading to the formation of large-scale swarms. However, how 4VA contributes to the transition from solitary phase to gregarious phase remains unclear. We investigated the occurrence of locust behavioral phase changes in the presence and absence of 4VA perception. The findings indicated that solitary locusts require crowding for 48 and 72 h to adopt partial and analogous gregarious behavior. However, exposure to increased concentrations of 4VA enabled solitary locusts to display behavioral changes within 24 h of crowding. Crowded solitary locusts with RNAi knockdown of Or35, the specific olfactory receptor for 4VA, failed to exhibit gregarious behaviors. Conversely, the knockdown of Or35 in gregarious locusts resulted in the appearance of solitary behavior. Additionally, a multi-individual behavioral assay system was developed to evaluate the interactions among locust individuals, and four behavioral parameters representing the inclination and conduct of social interactions were positively correlated with the process of crowding. Our data indicated that exposure to 4VA accelerated the behavioral transition from solitary phase to gregarious phase by enhancing the propensity toward proximity and body contact among conspecific individuals. These results highlight the crucial roles of 4VA in the behavioral phase transition of locusts. Furthermore, this study offers valuable insights into the mechanisms of behavioral plasticity that promote the formation of locust swarms and suggests the potential for 4VA application in locust control.


Asunto(s)
Saltamontes , Saltamontes/fisiología , Comunicación Animal , Conducta Animal , Receptores Odorantes/metabolismo , Estirenos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(5): e2216851120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36701367

RESUMEN

The phase transition from solitary to gregarious locusts is crucial in outbreaks of locust plague, which threaten agricultural yield and food security. Research on the regulatory mechanisms of phase transition in locusts has focused primarily on the transcriptional or posttranslational level. However, the translational regulation of phase transition is unexplored. Here, we show a phase-dependent pattern at the translation level, which exhibits different polysome profiles between gregarious and solitary locusts. The gregarious locusts exhibit significant increases in 60S and polyribosomes, while solitary locusts possess higher peaks of the monoribosome and a specific "halfmer." The polysome profiles, a molecular phenotype, respond to changes in population density. In gregarious locusts, ten genes involved in the cytosolic ribosome pathway exhibited increased translational efficiency (TE). In solitary locusts, five genes from the mitochondrial ribosome pathway displayed increased TE. The high expression of large ribosomal protein 7 at the translational level promotes accumulation of the free 60S ribosomal subunit in gregarious locusts, while solitary locusts employ mitochondrial small ribosomal protein 18c to induce the assembly of mitochondrial ribosomes, causing divergence of the translational profiles and behavioral transition. This study reveals the translational regulatory mechanism of locust phase transition, in which the locusts employ divergent ribosome pathways to cope with changes in population density.


Asunto(s)
Saltamontes , Animales , Saltamontes/fisiología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Densidad de Población , Ribosomas/genética
4.
Proc Natl Acad Sci U S A ; 120(1): e2215660120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574679

RESUMEN

The aggregation of locusts from solitary to gregarious phases is crucial for the formation of devastating locust plagues. Locust management requires research on the prevention of aggregation or alternative and greener solutions to replace insecticide use, and insect-derived microRNAs (miRNAs) show the potential for application in pest control. Here, we performed a genome-wide screen of the differential expression of miRNAs between solitary and gregarious locusts and showed that miR-8-5p controls the γ-aminobutyric acid (GABA)/glutamate functional balance by directly targeting glutamate decarboxylase (Gad). Blocking glutamate-GABA neurotransmission by miR-8-5p overexpression or Gad RNAi in solitary locusts decreased GABA production, resulting in locust aggregation behavior. Conversely, activating this pathway by miR-8-5p knockdown in gregarious locusts induced GABA production to eliminate aggregation behavior. Further results demonstrated that ionotropic glutamate/GABA receptors tuned glutamate/GABA to trigger/hamper the aggregation behavior of locusts. Finally, we successfully established a transgenic rice line expressing the miR-8-5p inhibitor by short tandem target mimic (STTM). When locusts fed on transgenic rice plants, Gad transcript levels in the brain increased greatly, and aggregation behavior was lost. This study provided insights into different regulatory pathways in the phase change of locusts and a potential control approach through behavioral regulation in insect pests.


Asunto(s)
Saltamontes , MicroARNs , Animales , Saltamontes/fisiología , Ácido Glutámico/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , Ácido gamma-Aminobutírico/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34996867

RESUMEN

Invariant stimulus recognition is a challenging pattern-recognition problem that must be dealt with by all sensory systems. Since neural responses evoked by a stimulus are perturbed in a multitude of ways, how can this computational capability be achieved? We examine this issue in the locust olfactory system. We find that locusts trained in an appetitive-conditioning assay robustly recognize the trained odorant independent of variations in stimulus durations, dynamics, or history, or changes in background and ambient conditions. However, individual- and population-level neural responses vary unpredictably with many of these variations. Our results indicate that linear statistical decoding schemes, which assign positive weights to ON neurons and negative weights to OFF neurons, resolve this apparent confound between neural variability and behavioral stability. Furthermore, simplification of the decoder using only ternary weights ({+1, 0, -1}) (i.e., an "ON-minus-OFF" approach) does not compromise performance, thereby striking a fine balance between simplicity and robustness.


Asunto(s)
Saltamontes/fisiología , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Animales , Modelos Neurológicos , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Olfato
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969848

RESUMEN

Flight ability is essential for the enormous diversity and evolutionary success of insects. The migratory locusts exhibit flight capacity plasticity in gregarious and solitary individuals closely linked with different density experiences. However, the differential mechanisms underlying flight traits of locusts are largely unexplored. Here, we investigated the variation of flight capacity by using behavioral, physiological, and multiomics approaches. Behavioral assays showed that solitary locusts possess high initial flight speeds and short-term flight, whereas gregarious locusts can fly for a longer distance at a relatively lower speed. Metabolome-transcriptome analysis revealed that solitary locusts have more active flight muscle energy metabolism than gregarious locusts, whereas gregarious locusts show less evidence of reactive oxygen species production during flight. The repression of metabolic activity by RNA interference markedly reduced the initial flight speed of solitary locusts. Elevating the oxidative stress by paraquat injection remarkably inhibited the long-distance flight of gregarious locusts. In respective crowding and isolation treatments, energy metabolic profiles and flight traits of solitary and gregarious locusts were reversed, indicating that the differentiation of flight capacity depended on density and can be reshaped rapidly. The density-dependent flight traits of locusts were attributed to the plasticity of energy metabolism and degree of oxidative stress production but not energy storage. The findings provided insights into the mechanism underlying the trade-off between velocity and sustainability in animal locomotion and movement.


Asunto(s)
Metabolismo Energético , Vuelo Animal , Saltamontes/fisiología , Estrés Oxidativo , Animales , Conducta Animal/fisiología , Saltamontes/metabolismo , Densidad de Población
7.
BMC Biol ; 22(1): 129, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822347

RESUMEN

BACKGROUND: The female locust is equipped with unique digging tools, namely two pairs of valves-a dorsal and a ventral-utilized for excavating an underground hole in which she lays her eggs. This apparatus ensures that the eggs are protected from potential predators and provides optimal conditions for successful hatching. The dorsal and the ventral valves are assigned distinct roles in the digging process. Specifically, the ventral valves primarily function as anchors during propagation, while the dorsal valves displace soil and shape the underground tunnel. RESULTS: In this study, we investigated the noticeable asymmetry and distinct shapes of the valves, using a geometrical model and a finite element method. Our analysis revealed that although the two pairs of valves share morphological similarities, they exhibit different 3D characteristics in terms of absolute size and structure. We introduced a structural characteristic, the skew of the valve cross-section, to quantify the differences between the two pairs of valves. Our findings indicate that these structural variations do not significantly contribute to the valves' load-bearing capabilities under external forces. CONCLUSIONS: The evolutionary development of the form of the female locust digging valves is more aligned with fitting their respective functions rather than solely responding to biomechanical support needs. By understanding the intricate features of these locust valves, and using our geometrical model, valuable insights can be obtained for creating more efficient and specialized tools for various digging applications.


Asunto(s)
Saltamontes , Animales , Femenino , Saltamontes/fisiología , Saltamontes/anatomía & histología , Fenómenos Biomecánicos , Análisis de Elementos Finitos
8.
BMC Biol ; 22(1): 150, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973001

RESUMEN

BACKGROUND: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS: Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS: Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.


Asunto(s)
Saltamontes , Proteínas de la Membrana , Animales , Saltamontes/fisiología , Saltamontes/efectos de los fármacos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Feromonas/farmacología , Conducta Sexual Animal/fisiología , Conducta Sexual Animal/efectos de los fármacos , Femenino , Cortejo , Acetonitrilos/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
9.
Proc Biol Sci ; 291(2023): 20240424, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807520

RESUMEN

Many theoretical treatments of foraging use energy as currency, with carbohydrates and lipids considered interchangeable as energy sources. However, herbivores must often synthesize lipids from carbohydrates since they are in short supply in plants, theoretically increasing the cost of growth. We tested whether a generalist insect herbivore (Locusta migratoria) can improve its growth efficiency by consuming lipids, and whether these locusts have a preferred caloric intake ratio of carbohydrate to lipid (C : L). Locusts fed pairs of isocaloric, isoprotein diets differing in C and L consistently selected a 2C : 1L target. Locusts reared on isocaloric, isoprotein 3C : 0L diets attained similar final body masses and lipid contents to locusts fed the 2C : 1L diet, but they ate more and had a ~12% higher metabolic rate, indicating an energetic cost for lipogenesis. These results demonstrate that some animals can selectively regulate carbohydrate-to-lipid intake and that consumption of dietary lipids can improve growth efficiency.


Asunto(s)
Carbohidratos de la Dieta , Saltamontes , Animales , Saltamontes/fisiología , Saltamontes/crecimiento & desarrollo , Grasas de la Dieta , Dieta/veterinaria , Metabolismo Energético , Metabolismo de los Lípidos , Ingestión de Energía , Herbivoria
10.
Biol Lett ; 20(2): 20230468, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378141

RESUMEN

Intermittent motion is prevalent in animal locomotion. Of special interest is the case of collective motion, in which social and environmental information must be processed in order to establish coordinated movement. We explored this nexus in locust, focusing on how intermittent motion interacts with swarming-related visual-based decision-making. Using a novel approach, we compared individual locust behaviour in response to continuously moving stimuli, with their response in semi-closed-loop conditions, in which the stimuli moved either in phase with the locust walking, or out of phase, i.e. only during the locust's pauses. Our findings clearly indicate the greater tendency of a locust to respond and 'join the swarming motion' when the visual stimuli were presented during its pauses. Hence, the current study strongly confirms previous indications of the dominant role of pauses in the collective motion-related decision-making of locusts. The presented insights contribute to a deeper general understanding of how intermittent motion contributes to group cohesion and coordination in animal swarms.


Asunto(s)
Saltamontes , Animales , Saltamontes/fisiología , Locomoción/fisiología , Conducta Animal/fisiología , Percepción Visual , Movimiento (Física)
11.
Naturwissenschaften ; 111(3): 28, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695961

RESUMEN

Sedentary animals choose appropriate refuges against predators, while migratory ones may not necessarily do so. In ectotherms, refuge selection is critical during low temperatures, because they cannot actively evade predators. To understand how migratory ectotherms alter their defensive behaviors depending on refuge quality in cold temperatures, we evaluated migratory gregarious desert locust nymphs (Schistocerca gregaria) in the Sahara Desert, where daily thermal constraints occur. We recorded how roosting plant type (bush/shrub) and its height influenced two alternative defense behaviors (dropping/stationary) during cold mornings, in response to an approaching simulated ground predator. Most locusts in bushes dropped within the bush and hid irrespective of their height, whereas those roosting > 2 m height in shrubs remained stationary. These defenses are effective and match with refuge plant types because dynamic locomotion is not required. When nymphs roosted on shrubs < 1.5-m height, which was an unsafe position, nearly half showed both defensive behaviors, indicating that escaping decisions become ambiguous when the refuges are inappropriate. These results suggest that locusts display flexible defensive behaviors when finding appropriate refuges and selecting refuge before daily thermal limitations occur could be critical for migratory ectotherms, which is a risk associated with migration.


Asunto(s)
Migración Animal , Saltamontes , Ninfa , Animales , Ninfa/fisiología , Ninfa/crecimiento & desarrollo , Saltamontes/fisiología , Saltamontes/crecimiento & desarrollo , Migración Animal/fisiología , Frío , Clima Desértico
12.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34635592

RESUMEN

Male mating harassment may occur when females and males do not have the same mating objectives. Communal animals need to manage the costs of male mating harassment. Here, we demonstrate how desert locusts in dense populations reduce such conflicts through behaviors. In transient populations (of solitarious morphology but gregarious behavior), we found that nongravid females occupied separate sites far from males and were not mating, whereas males aggregated on open ground (leks), waiting for gravid females to enter the lekking sites. Once a male mounted a gravid female, no other males attacked the pair; mating pairs were thereby protected during the vulnerable time of oviposition. In comparison, solitarious locusts displayed a balanced sex ratio in low-density populations, and females mated irrespective of their ovarian state. Our results indicate that the mating behaviors of desert locusts are density dependent and that sex-biased behavioral group separation may minimize the costs of male mating harassment and competition.


Asunto(s)
Saltamontes/fisiología , Conducta Sexual Animal , Animales , Femenino , Masculino , Ovario/crecimiento & desarrollo , Razón de Masculinidad
13.
J Physiol ; 601(19): 4355-4373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37671925

RESUMEN

In animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two-dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course. Under these conditions, we found that the angular threshold conveyed by collision detecting neurons in grasshoppers was sensitive to acceleration whereas the triggering of escape behaviours was less so. In contrast, neurons in goldfish identified through the characteristic features of the escape behaviours they trigger, showed little sensitivity to acceleration. This closely mirrored a broader lack of sensitivity to acceleration of the goldfish escape behaviour. Thus, although the sensory coding of simulated colliding stimuli with non-zero acceleration probably differs in grasshoppers and goldfish, the triggering of escape behaviours converges towards similar characteristics. Approaching stimuli with non-zero acceleration may help refine our understanding of neural computations underlying escape behaviours in a broad range of animal species. KEY POINTS: A companion manuscript showed that two mathematical models of collision-detecting neurons in grasshoppers and goldfish make distinct predictions for the timing of their responses to simulated objects approaching on a collision course with non-zero acceleration. Testing these experimental predictions showed that grasshopper neurons are sensitive to acceleration while goldfish neurons are not, in agreement with the distinct models proposed previously in these species using constant velocity approaches. Grasshopper and goldfish escape behaviours occurred after the stimulus reached a fixed angular size insensitive to acceleration, suggesting further downstream processing in grasshopper motor circuits to match what was observed in goldfish. Thus, in spite of different sensory processing in the two species, escape behaviours converge towards similar solutions. The use of object acceleration during approach on a collision course may help better understand the neural computations implemented for collision avoidance in a broad range of species.


Asunto(s)
Saltamontes , Percepción de Movimiento , Animales , Percepción de Movimiento/fisiología , Saltamontes/fisiología , Percepción Visual , Neuronas/fisiología , Potenciales de la Membrana , Estimulación Luminosa/métodos , Mamíferos
14.
Proc Biol Sci ; 290(1991): 20221862, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36651041

RESUMEN

Collectively moving groups of animals rely on the decision-making of locally interacting individuals in order to maintain swarm cohesion. However, the complex and noisy visual environment poses a major challenge to the extraction and processing of relevant information. We addressed this challenge by studying swarming-related decision-making in desert locust last-instar nymphs. Controlled visual stimuli, in the form of random dot kinematograms, were presented to tethered locust nymphs in a trackball set-up, while monitoring movement trajectory and walking parameters. In a complementary set of experiments, the neurophysiological basis of the observed behavioural responses was explored. Our results suggest that locusts use filtering and discrimination upon encountering multiple stimuli simultaneously. Specifically, we show that locusts are sensitive to differences in speed at the individual conspecific level, and to movement coherence at the group level, and may use these to filter out non-relevant stimuli. The locusts also discriminate and assign different weights to different stimuli, with an observed interactive effect of stimulus size, relative abundance and motion direction. Our findings provide insights into the cognitive abilities of locusts in the domain of decision-making and visual-based collective motion, and support locusts as a model for investigating sensory-motor integration and motion-related decision-making in the intricate swarm environment.


Asunto(s)
Saltamontes , Percepción Visual , Animales , Saltamontes/fisiología , Movimiento , Movimiento (Física)
15.
Artículo en Inglés | MEDLINE | ID: mdl-36550368

RESUMEN

Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.


Asunto(s)
Saltamontes , Animales , Saltamontes/fisiología , Encéfalo/fisiología , Insectos/fisiología , Orientación Espacial , Luz Solar
16.
Artículo en Inglés | MEDLINE | ID: mdl-36809566

RESUMEN

Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.


Asunto(s)
Encéfalo , Saltamontes , Animales , Encéfalo/fisiología , Neuronas/fisiología , Interneuronas , Saltamontes/fisiología , Insectos , Agua
17.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655788

RESUMEN

Migration allows animals to track favorable environments and avoid harmful conditions. However, migration is energetically costly, so migrating animals must prepare themselves by increasing their energy stores. Despite the importance of locust migratory swarms, we still understand little about the physiology of locust migration. During long-distance flight, locusts rely on lipid oxidation, despite the fact that lipids are relatively rare in their leaf-based diets. Therefore, locusts and other insect herbivores synthesize and store lipid from ingested carbohydrates, which are also important for initial flight. These data suggest that diets high in carbohydrate should increase lipid stores and the capacity for migratory flight in locusts. As predicted, locust lipid stores and flight performance increased with an increase in the relative carbohydrate content in their food. However, locust flight termination was not associated with complete lipid depletion. We propose potential testable mechanisms that might explain how macronutrient consumption can affect flight endurance.


Asunto(s)
Saltamontes , Animales , Saltamontes/fisiología , Dieta , Carbohidratos , Lípidos , Vuelo Animal/fisiología
18.
Biol Cybern ; 117(1-2): 129-142, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37029831

RESUMEN

The processing of visual information for collision avoidance has been investigated at the biophysical level in several model systems. In grasshoppers, the (so-called) [Formula: see text] model captures reasonably well the visual processing performed by an identified neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision avoidance in other animals. Specifically, in goldfish, the [Formula: see text] model has been proposed to describe the Mauthner cell, an identified neuron involved in startle escape responses. In the vinegar fly, a third model was developed for the giant fiber neuron, which triggers last resort escapes immediately before an impending collision. One key property of these models is their prediction that peak neuronal responses occur at a fixed delay after the simulated approaching object reaches a threshold angular size on the retina. This prediction is valid for simulated objects approaching at a constant speed. We tested whether it remains valid when approaching objects accelerate. After characterizing and comparing the models' responses to accelerating and constant speed stimuli, we find that the prediction holds true for the [Formula: see text] and the giant fiber model, but not for the [Formula: see text] model. These results suggest that acceleration in the approach trajectory of an object may help distinguish and further constrain the neuronal computations required for collision avoidance in grasshoppers, fish and vinegar flies.


Asunto(s)
Saltamontes , Percepción de Movimiento , Animales , Ácido Acético , Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Neuronas/fisiología , Percepción Visual , Saltamontes/fisiología
19.
Proc Natl Acad Sci U S A ; 117(41): 25810-25817, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989147

RESUMEN

Many animals use celestial cues for spatial orientation. These include the sun and, in insects, the polarization pattern of the sky, which depends on the position of the sun. The central complex in the insect brain plays a key role in spatial orientation. In desert locusts, the angle of polarized light in the zenith above the animal and the direction of a simulated sun are represented in a compass-like fashion in the central complex, but how both compasses fit together for a unified representation of external space remained unclear. To address this question, we analyzed the sensitivity of intracellularly recorded central-complex neurons to the angle of polarized light presented from up to 33 positions in the animal's dorsal visual field and injected Neurobiotin tracer for cell identification. Neurons were polarization sensitive in large parts of the virtual sky that in some cells extended to the horizon in all directions. Neurons, moreover, were tuned to spatial patterns of polarization angles that matched the sky polarization pattern of particular sun positions. The horizontal components of these calculated solar positions were topographically encoded in the protocerebral bridge of the central complex covering 360° of space. This whole-sky polarization compass does not support the earlier reported polarization compass based on stimulation from a small spot above the animal but coincides well with the previously demonstrated direct sun compass based on unpolarized light stimulation. Therefore, direct sunlight and whole-sky polarization complement each other for robust head direction coding in the locust central complex.


Asunto(s)
Saltamontes/fisiología , Saltamontes/efectos de la radiación , Animales , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Orientación Espacial , Sistema Solar , Percepción Espacial , Luz Solar
20.
Proc Natl Acad Sci U S A ; 117(4): 2180-2186, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932424

RESUMEN

Gravity is one of the most ubiquitous environmental effects on living systems: Cellular and organismal responses to gravity are of central importance to understanding the physiological function of organisms, especially eukaryotes. Gravity has been demonstrated to have strong effects on the closed cardiovascular systems of terrestrial vertebrates, with rapidly responding neural reflexes ensuring proper blood flow despite changes in posture. Invertebrates possess open circulatory systems, which could provide fewer mechanisms to restrict gravity effects on blood flow, suggesting that these species also experience effects of gravity on blood pressure and distribution. However, whether gravity affects the open circulatory systems of invertebrates is unknown, partly due to technical measurement issues associated with small body size. Here we used X-ray imaging, radio-tracing of hemolymph, and micropressure measurements in the American grasshopper, Schistocerca americana, to assess responses to body orientation. Our results show that during changes in body orientation, gravity causes large changes in blood and air distribution, and that body position affects ventilation rate. Remarkably, we also found that insects show similar heart rate responses to body position as vertebrates, and contrasting with the classic understanding of open circulatory systems, have flexible valving systems between thorax and abdomen that can separate pressures. Gravitational effects on invertebrate cardiovascular and respiratory systems are likely to be widely distributed among invertebrates and to have broad influence on morphological and physiological evolution.


Asunto(s)
Saltamontes/fisiología , Gravitación , Adaptación Fisiológica , Animales , Presión Sanguínea , Tamaño Corporal , Fenómenos Fisiológicos Cardiovasculares , Saltamontes/crecimiento & desarrollo , Fenómenos Fisiológicos Respiratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA