Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
2.
Nature ; 558(7711): 564-568, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29950623

RESUMEN

Saturn's moon Enceladus harbours a global water ocean 1 , which lies under an ice crust and above a rocky core 2 . Through warm cracks in the crust 3 a cryo-volcanic plume ejects ice grains and vapour into space4-7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10-12, powered by tidal dissipation 13 . So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus' organic inventory in enhanced concentrations.


Asunto(s)
Medio Ambiente Extraterrestre/química , Saturno , Exobiología , Hielo/análisis , Volatilización
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493668

RESUMEN

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s-1 up to 3 km ⋅ s-1 Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s-1 Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level-a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Asunto(s)
Biomarcadores/análisis , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Hielo/análisis , Luna , Origen de la Vida , Saturno , Atmósfera , Estudios de Factibilidad
4.
Chemistry ; 27(2): 600-604, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33108005

RESUMEN

Saturn's satellite Enceladus is proposed to have a soda-type subsurface ocean with temperature able to support life and an iron ore-based core. Here, it was demonstrated that ocean chemistry related to Enceladus can support the development of Fe-based hydrothermal vents, one of the places suggested to be the cradle of life. The Fe-based chemical gardens were characterized with Fourier-transform (FT)IR spectroscopy and XRD. The developed chemobrionic structures catalyzed the condensation polymerization of simple organic prebiotic molecules to kerogens. Further, they could passively catalyze the condensation of the prebiotic molecule formamide to larger polymers, suggesting that elementary biochemical precursors could have emerged in Enceladus.


Asunto(s)
Evolución Química , Exobiología , Medio Ambiente Extraterrestre/química , Saturno , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
5.
Technol Cult ; 62(4): 1087-1118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719514

RESUMEN

In the late 1970s and early 1980s, NASA's Voyager mission offered the first clear pictures of Jupiter and Saturn. These images show the planets in strikingly brilliant, recognizably engineered, psychedelic colors: technology's palette. The use of color was justified on epistemological grounds; it made visible scientifically compelling features. But color palette also has a history, one that has not been previously considered. This article takes up this history and adds to the literature on the visual culture of science. It establishes that the Jet Propulsion Laboratory's pioneering role in digital image processing, the color conventions adopted for representing Earth, and American counterculture of the 1960s and its attitudes toward technology together created the conditions that allowed for hyperchromatic views of the planets. Technology's palette enhanced the scientific understanding of Jupiter and Saturn, while simultaneously celebrating technologically enhanced vision and the promise of seeing by means of humanmachine collaborations.


Asunto(s)
Júpiter , Saturno , Medio Ambiente Extraterrestre , Planetas , Tecnología
6.
Curr Issues Mol Biol ; 38: 53-74, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31967576

RESUMEN

Carbon-based compounds are widespread throughout the Universe, including abiotic molecules that are the components of the life as we know it. This article reviews the space missions that have aimed to detect organic matter and biosignatures in planetary bodies of our solar system. While to date there was only one life-detection space mission, i.e., the Viking mission to Mars, several past and present space missions have searched for organic matter, paving the way for the future detection of signatures of extra-terrestrial life. This review also reports on the in-situ analysis of organic matter and sample-return missions from primitive bodies, i.e. comets and asteroids, providing crucial information on the conditions of the early solar system as well as on the building blocks of life delivered to the primitive Earth.


Asunto(s)
Carbono/química , Medio Ambiente Extraterrestre/química , Compuestos Orgánicos/química , Sistema Solar/química , Exobiología , Cromatografía de Gases y Espectrometría de Masas , Historia del Siglo XX , Historia del Siglo XXI , Marte , Meteoroides , Planetas Menores , Plutón , Saturno , Vuelo Espacial/historia , Estados Unidos , United States National Aeronautics and Space Administration
8.
Proc Natl Acad Sci U S A ; 113(29): 8121-6, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382167

RESUMEN

The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn's moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable "natural laboratory" for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan's atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI's intermolecular and intramolecular =N-H(…)N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.


Asunto(s)
Cianuro de Hidrógeno/química , Polímeros/química , Medio Ambiente Extraterrestre , Estructura Molecular , Polimerizacion , Saturno
9.
Nature ; 552(7685): 304-307, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29293246
10.
Orig Life Evol Biosph ; 46(2-3): 283-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26559966

RESUMEN

We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth's sea floors.


Asunto(s)
Medio Ambiente Extraterrestre , Gravitación , Modelos Estadísticos , Saturno , Exobiología , Humanos , Hielo/análisis
11.
Orig Life Evol Biosph ; 46(4): 533-538, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27108425

RESUMEN

Reliable theoretical models of the chemical kinetics of the ionosphere of Saturn's moon, Titan, is highly dependent on the precision of the rates of the reactions of ambient ions with hydrocarbon molecules at relevant temperatures. A Variable Temperature Selected Ions Flow Tube technique, which has been developed primarily to study these reactions at temperatures within the range of 200-330 K, is briefly described. The flow tube temperature regulation system and the thermalisation of ions are also discussed. Preliminary studies of two reactions have been carried out to check the reliability and efficacy of kinetics measurements: (i) Rate constants of the reaction of CH3+ ions with molecular oxygen were measured at different temperatures, which indicate values in agreement with previous ion cyclotron resonance measurements ostensibly made at 300 K. (ii) Formation of CH3+ ions in the reaction of N2+ ions with CH4 molecules were studied at temperatures within the range 240-310 K which showed a small but statistically significant decrease of the ratio of product CH3+ ions to reactant N2+ ions with reaction temperature.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre , Saturno , Iones/química , Cinética , Modelos Químicos , Proyectos Piloto , Temperatura
12.
Orig Life Evol Biosph ; 46(4): 419-424, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27068153

RESUMEN

Methane conversion and in particular the formation of the C-O bond is one of fundamental entries to organic chemistry and it appears to be essential for understanding parts of atmospheric chemistry of Titan, but, in broader terms it might be also relevant for Earth-like exoplanets. Theoretical study of the reactions of methane with atomic oxygen ion in its excited electronic states requires treating simultaneously at least 19 electronic states. Development of a computational strategy that would allow chemically reasonable and computationally feasible treatment of the CH4 (X)/O+ (2D, 2P) system is by far not trivial and it requires careful examination of all the complex features of the corresponding 19 potential energy surfaces. Before entering the discussion of the rich (photo) chemistry, inspection of the long range behavior of the system with focus on electric dipole transition moments is required. Our calculations show nonzero probability for the reactants to decay before entering the multiple avoided crossings region of the [CH4 + O â†’ products]+ reaction. For the CH4/O+ (2P) system non-zero transition moment probabilities occur over the entire range of considered C-O distances (up to 15 Å), while for the CH4/O+ (2D) system these probabilities are lower by one order of magnitude and were found only at C-O distances smaller than 6 Å.


Asunto(s)
Atmósfera , Medio Ambiente Extraterrestre , Modelos Teóricos , Saturno , Exobiología , Metano/química , Oxígeno/química
14.
Phys Chem Chem Phys ; 17(32): 20754-64, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26204935

RESUMEN

The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.


Asunto(s)
Alquenos/química , Alquinos/química , Atmósfera/química , Saturno , Radicales Libres/química , Estructura Molecular , Peso Molecular
15.
Proc Natl Acad Sci U S A ; 109(37): 14785-90, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22908239

RESUMEN

There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.


Asunto(s)
Amoníaco/química , Atmósfera/química , Medio Ambiente Extraterrestre , Transición de Fase , Saturno , Agua/química , Frío , Furanos/química , Enlace de Hidrógeno , Metano/química , Simulación de Dinámica Molecular , Espectrometría Raman , Difracción de Rayos X
16.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227837

RESUMEN

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Asunto(s)
Júpiter , Marte , Saturno , Humanos , Medio Ambiente Extraterrestre , Exobiología/métodos
17.
Astrobiology ; 24(2): 177-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306187

RESUMEN

Titan has an organic-rich atmosphere and surface with a subsurface liquid water ocean that may represent a habitable environment. In this work, we determined the amount of organic material that can be delivered from Titan's surface to its ocean through impact cratering. We assumed that Titan's craters produce impact melt deposits composed of liquid water that can founder in its lower-density ice crust and estimated the amount of organic molecules that could be incorporated into these melt lenses. We used known yields for HCN and Titan haze hydrolysis to determine the amount of glycine produced in the melt lenses and found a range of possible flux rates of glycine from the surface to the subsurface ocean. These ranged from 0 to 1011 mol/Gyr for HCN hydrolysis and from 0 to 1014 mol/Gyr for haze hydrolysis. These fluxes suggest an upper limit for biomass productivity of ∼103 kgC/year from a glycine fermentation metabolism. This upper limit is significantly less than recent estimates of the hypothetical biomass production supported by Enceladus's subsurface ocean. Unless biologically available compounds can be sourced from Titan's interior, or be delivered from the surface by other mechanisms, our calculations suggest that even the most organic-rich ocean world in the Solar System may not be able to support a large biosphere.


Asunto(s)
Medio Ambiente Extraterrestre , Saturno , Agua , Sistema Solar , Glicina , Océanos y Mares , Atmósfera
18.
J Chromatogr A ; 1722: 464860, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593521

RESUMEN

Thanks to the Cassini-Huygens space mission between 2004 and 2017, a lot was learned about Titan, the biggest satellite of Saturn, and its intriguing atmosphere, surface, and organic chemistry complexity. However, key questions about the potential for the atmosphere and surface chemistry to produce organic molecules of direct interest for prebiotic chemistry and life did not find an answer. Due to Titan potential as a habitable world, NASA selected the Dragonfly space mission to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for minimum 3 years. One of the main goals of this mission will be to understand the past and actual abundant prebiotic chemistry on Titan, especially using the Dragonfly Mass Spectrometer (DraMS). Two recently used sample pre-treatments for Gas Chromatography - Mass Spectrometry (GC-MS mode of DraMS) analyses are planned prior analysis to extract refractory organic molecules of interest for prebiotic chemistry and astrobiology. The dimethylformamide dimethylacetal (DMF-DMA) derivatization reaction offers undoubtedly an opportunity to detect biosignatures by volatilizing refractory biological or prebiotic molecules and conserving the chiral carbons' conformation while an enantiomeric excess indicates a chemical feature induced primarily by life (and may be aided on the primitive systems by light polarization). The goal of this study is to investigate the ageing of DMF-DMA in DraMS (and likely MOMA) capsules prior to in situ analysis on Titan (or Mars). The main results highlighted by our work on DMF-DMA are first its satisfactory stability for space requirements through time (no significant degradation over a year of storage and less than 30 % of lost under thermal stress) to a wide range of temperature (0 °C to 250 °C), or the presence of water and oxidants during the derivatization reaction (between 0 and 10 % of DMF-DMA degradation). Moreover, this reagent derivatized very well amines and carboxylic acids in high or trace amounts (ppt to hundreds of ppm), conserving their molecular conformation during the heat at 145 °C for 3 min (0 to 4% in the enantiomeric form change).


Asunto(s)
Saturno , Estereoisomerismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Dimetilformamida/química , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Vuelo Espacial
19.
J Am Chem Soc ; 135(19): 7251-63, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23600331

RESUMEN

Ab initio G3(MP2,CC)/B3LYP/6-311G** calculations of potential energy surfaces (PESs) for the reactions of cyano and ethynyl radicals with styrene and N-methylenebenzenamine have been performed to investigate a possible formation mechanism of the prototype nitrogen-containing polycyclic aromatic compounds: (substituted) 1- and 2-azanaphthalenes. The computed PESs and molecular parameters have been used for RRKM and RRKM-Master Equation calculations of reaction rate constants and product branching ratios under single-collision conditions and at pressures from 3 to 10(-6) mbar and temperatures of 90-200 K relevant to the organic aerosol formation regions in the stratosphere of a Saturn's moon Titan. The results show that ethynyl-substituted 1- and 2-azanaphthalenes can be produced by consecutive CN and C2H additions to styrene or by two C2H additions to N-methylenebenzenamine. All CN and C2H radical addition complexes are formed in the entrance channels without barriers, and the reactions are computed to be exothermic, with all intermediates and transition states along the favorable pathways residing lower in energy than the respective initial reactants. The reactions are completed by dissociation of chemically activated radical intermediates via H losses, so that collisional stabilization of the intermediates is not required to form the final products. These features make the proposed mechanism viable even at very low temperatures and under single-collision conditions and especially significant for astrochemical environments. In Titan's stratosphere, collisional stabilization of the initial CN + styrene reaction adducts may be significant, but substantial amounts of 2-vinylbenzonitrile and 2-ethynyl-N-methylenebenzenamine can still be produced and then react with C2H to form substituted azanaphthalenes.


Asunto(s)
Alquinos/química , Compuestos de Anilina/química , Compuestos Aza/química , Naftalenos/química , Nitrilos/química , Estireno/química , Derivados del Benceno/química , Frío , Medio Ambiente Extraterrestre/química , Modelos Moleculares , Saturno
20.
Anal Chem ; 85(2): 1124-31, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23214444

RESUMEN

We demonstrate microchip nonaqueous capillary electrophoresis (µNACE) analysis of primary aliphatic amines (C1-C18) in ethanol down to -20 °C as a first step in adapting microfluidic protocols for in situ analysis on Titan. To our knowledge, this is the first report of a nonaqueous separation at -20 °C on-chip. Limits of detection (LODs) ranged from 1.0 nM to 2.6 nM, and we identified several primary amines ranging in length from C2 to C16 in Titan aerosol analogue (tholin) samples; new amines were also detected in a tholin sample exposed to oxygen and liquid water. This preliminary work validates the sensitivity and efficacy of microfluidic chemical analysis of complex organics with relevance to Titan aerosols and surface deposits.


Asunto(s)
Aminas/análisis , Electroforesis por Microchip , Temperatura , Saturno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA