Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Plant J ; 109(1): 7-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800071

RESUMEN

Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome-wide association study methods were used to identify candidate genes in two iconic and ecosystem-dominating species of the western USA, coast redwood and giant sequoia, using 10 drought-related physiological and anatomical traits and genome-wide sequence-capture single nucleotide polymorphisms. Population-level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long-generation conifers and helps guide current and future conservation efforts in the species.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta/genética , Sequoia/genética , Sequoiadendron/genética , Transducción de Señal/genética , Isótopos de Carbono/análisis , Conservación de los Recursos Naturales , Sequías , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Presión Osmótica , Fenotipo , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Sequoia/fisiología , Sequoiadendron/fisiología , Xilema/genética , Xilema/fisiología
2.
Lancet Oncol ; 23(8): 1031-1043, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35810754

RESUMEN

BACKGROUND: Zanubrutinib is a next-generation, selective Bruton tyrosine kinase inhibitor with efficacy in relapsed chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). We compared zanubrutinib with bendamustine-rituximab to determine its effectiveness as frontline therapy in patients with CLL or SLL. METHODS: We conducted an open-label, multicentre, phase 3 study at 153 academic or community hospitals in 14 countries and regions. Eligible patients had untreated CLL or SLL requiring treatment as per International Workshop on CLL criteria; were aged 65 years or older, or 18 years or older and had comorbidities; and had an Eastern Cooperative Oncology Group performance status score of 0-2. A central interactive web response system randomly assigned patients without del(17)(p13·1) to zanubrutinib (group A) or bendamustine-rituximab (group B) by sequential block method (permutated blocks with a random block size of four). Patients with del(17)(p13·1) were enrolled in group C and received zanubrutinib. Zanubrutinib was administered orally at 160 mg twice per day (28-day cycles); bendamustine at 90 mg/m2 of body surface area on days 1 and 2 for six cycles plus rituximab at 375 mg/m2 of body surface area the day before or on day 1 of cycle 1, and 500 mg/m2 of body surface area on day 1 of cycles 2-6, were administered intravenously. The primary endpoint was progression-free survival per independent review committee in the intention-to-treat population in groups A and B, with minimum two-sided α of 0·05 for superiority. Safety was analysed in all patients who received at least one dose of study treatment. The study is registered with ClinicalTrials.gov, NCT03336333, and is closed to recruitment. FINDINGS: Between Oct 31, 2017, and July 22, 2019, 590 patients were enrolled; patients without del(17)(p13·1) were randomly assigned to zanubrutinib (group A; n=241) or bendamustine-rituximab (group B; n=238). At median follow-up of 26·2 months (IQR 23·7-29·6), median progression-free survival per independent review committee was not reached in either group (group A 95% CI not estimable [NE] to NE; group B 28·1 months to NE). Progression-free survival was significantly improved in group A versus group B (HR 0·42 [95% CI 0·28 to 0·63]; two-sided p<0·0001). The most common grade 3 or worse adverse event was neutropenia (27 [11%] of 240 patients in group A, 116 [51%] of 227 in group B, and 17 [15%] of 111 patients in group C). Serious adverse events occurred in 88 (37%) of 240 patients in group A, 113 (50%) of 227 patients in group B, and 45 (41%) of 111 patients in group C. Adverse events leading to death occurred in 11 (5%) of 240 patients in group A, 12 (5%) of 227 patients in group B, and three (3%) of 111 patients in group C, most commonly due to COVID-19 (four [2%] of 240 patients in group A), diarrhoea, and aspiration pneumonia (two each [1%] of 227 patients in group B). INTERPRETATION: Zanubrutinib significantly improved progression-free survival versus bendamustine-rituximab, with an acceptable safety profile consistent with previous studies. These data support zanubrutinib as a potential new treatment option for untreated CLL and SLL. FUNDING: BeiGene.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Sequoia , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Clorhidrato de Bendamustina , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Piperidinas , Pirazoles , Pirimidinas , Rituximab
3.
Mol Ecol ; 31(8): 2475-2493, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35152495

RESUMEN

Mega-fires of unprecedented size, intensity and socio-economic impacts have surged globally due to climate change, fire suppression and development. Soil microbiomes are critical for post-fire plant regeneration and nutrient cycling, yet how mega-fires impact the soil microbiome remains unclear. We had a serendipitous opportunity to obtain pre- and post-fire soils from the same sampling locations after the 2016 Soberanes mega-fire burned with high severity throughout several of our established redwood-tanoak plots. This makes our study the first to examine microbial fire response in redwood-tanoak forests. We re-sampled soils immediately post-fire from two burned plots and one unburned plot to elucidate the effect of mega-fire on soil microbiomes. We used Illumina MiSeq sequencing of 16S and ITS1 sequences to determine that bacterial and fungal richness were reduced by 38%-70% in burned plots, with richness unchanged in the unburned plot. Fire altered composition by 27% for bacteria and 24% for fungi, whereas the unburned plots experienced no change in fungal and negligible change in bacterial composition. Pyrophilous taxa that responded positively to fire were phylogenetically conserved, suggesting shared evolutionary traits. For bacteria, fire selected for increased Firmicutes and Actinobacteria. For fungi, fire selected for the Ascomycota classes Pezizomycetes and Eurotiomycetes and for a Basidiomycota class of heat-resistant Geminibasidiomycete yeasts. We build from Grime's competitor-stress tolerator-ruderal (C-S-R) framework and its recent microbial applications to show how our results might fit into a trait-based conceptual model to help predict generalizable microbial responses to fire.


Asunto(s)
Ascomicetos , Incendios , Sequoia , Bacterias/genética , Ecosistema , Bosques , Suelo
4.
Plant Cell Environ ; 45(9): 2607-2616, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736139

RESUMEN

Tracheid buckling may protect leaves in the dynamic environments of forest canopies, where rapid intensifications of evaporative demand, such as those brought on by changes in light availability, can result in sudden increases in transpiration rate. While treetop leaves function in reliably direct light, leaves below the upper crown must tolerate rapid, thermally driven increases in evaporative demand. Using synchrotron-based X-ray microtomography, we visualized impacts of experimentally induced water stress and subsequent fogging on living cells in redwood leaves, adding ecological and functional context through crown-wide explorations of variation in leaf physiology and microclimate. Under drought, leaf transfusion tracheids buckle, releasing water that supplies sufficient temporal reserves for leaves to reduce stomatal conductance safely while stopping the further rise of tension. Tracheid buckling fraction decreases with height and is closely coordinated with transfusion tissue capacity and stomatal conductance to provide temporal reserves optimized for local variation in microclimate. Foliar water uptake fully restores collapsed and air-filled transfusion tracheids in leaves on excised shoots, suggesting that trees may use aerial water sources for recovery. In the intensely variable deep-crown environment, foliar water uptake can allow for repetitive cycles of tracheid buckling and unbuckling, protecting the tree from damaging levels of hydraulic tension and supporting leaf survival.


Asunto(s)
Sequoia , Árboles , Sequías , Hojas de la Planta/fisiología , Transpiración de Plantas , Sequoia/fisiología , Árboles/fisiología , Tiempo (Meteorología)
5.
Am J Bot ; 109(4): 564-579, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35274309

RESUMEN

PREMISE: Trees in wet forests often have features that prevent water films from covering stomata and inhibiting gas exchange, while many trees in drier environments use foliar water uptake to reduce water stress. In forests with both wet and dry seasons, evergreen trees would benefit from producing leaves capable of balancing rainy-season photosynthesis with summertime water absorption. METHODS: Using samples collected from across the vertical gradient in tall redwood (Sequoia sempervirens) crowns, we estimated tree-level foliar water uptake and employed physics-based causative modeling to identify key functional traits that determine uptake potential by setting hydraulic resistance. RESULTS: We showed that Sequoia has two functionally distinct shoot morphotypes. While most shoots specialize in photosynthesis, the axial shoot type is capable of much greater foliar water uptake, and its within-crown distribution varies with latitude. A suite of leaf surface traits cause hydraulic resistance, leading to variation in uptake capacity among samples. CONCLUSIONS: Shoot dimorphism gives tall Sequoia trees the capacity to absorb up to 48 kg H2 O h-1 during the first hour of leaf wetting, ameliorating water stress while presumably maintaining high photosynthetic capacity year round. Geographic variation in shoot dimorphism suggests that plasticity in shoot-type distribution and leaf surface traits helps Sequoia maintain a dominate presence in both wet and dry forests.


Asunto(s)
Sequoia , Deshidratación , Fotosíntesis , Hojas de la Planta , Caracteres Sexuales , Árboles
6.
J Digit Imaging ; 35(4): 812-816, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36070015

RESUMEN

Every organization in the health IT industry plays an important role in overcoming barriers to health information exchange in the United States. It is important to understand imaging interoperability in the overall context of Health Information Exchange (HIE). The rapid evolution of storage, bandwidth and network transport technologies has made the handling of imaging data converge with the primarily text-based healthcare data. The radiology community must understand the overall environment and become a tightly integrated part of it. As the health IT ecosystems continue to evolve, it became clear that there would not be a single health information exchange network to service the nation. Rather, like other industries such as telecom and banking, there would be multiple networks that would need to interconnect. To support compliance to interoperability standards and specifications, The Sequoia Project began collaborating with industry to create testing programs and tooling that supports transport, security and content testing requirements for four production testing programs today. These testing programs validate compliance to standards for transport and security as well standards for the payloads such as clinical documents and imaging data. While once operating under the same umbrella, The Sequoia Project, Carequality and eHealth Exchange ( https://ehealthexchange.org/ ) have been separate companies since 2018. Each plays a unique role in helping patient information move where and when it is needed, each working with a framework of standards published by IHE, DICOM, and HL7 to enable health information exchange.


Asunto(s)
Radiología , Sequoia , Telemedicina , Ecosistema , Humanos , Estados Unidos
7.
BMC Genomics ; 22(1): 513, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233619

RESUMEN

BACKGROUND: Direct-sequencing technologies, such as Oxford Nanopore's, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. RESULT: Here, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. CONCLUSIONS: Sequoia's interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available at https://github.com/dnonatar/Sequoia .


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Sequoia , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
8.
Mol Ecol ; 29(23): 4721-4734, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33000868

RESUMEN

Experimental drought has been shown to delay the development of the root microbiome and increase the relative abundance of Actinobacteria, however, the generalizability of these findings to natural systems or other diverse plant hosts remains unknown. Bacterial cell wall thickness and growth morphology (e.g., filamentous or unicellular) have been proposed as traits that may mediate bacterial responses to environmental drivers. Leveraging a natural gradient of water-availability across the coast redwood (Sequoia sempervirens) range, we tested three hypotheses: (a) that site-specific water-availability is an important predictor of bacterial community composition for redwood roots and rhizosphere soils; (b) that there is relative enrichment of Actinobacteria and other monoderm bacterial groups within the redwood microbiome in response to drier conditions; and (c) that bacterial growth morphology is an important predictor of bacteria response to water-availability, where filamentous taxa will become more dominant at drier sites compared to unicellular bacteria. We find that both α- and ß-diversity of redwood bacterial communities is partially explained by water-availability and that Actinobacterial enrichment is a conserved response of land plants to water-deficit. Further, we highlight how the trend of Actinobacterial enrichment in the redwood system is largely driven by the Actinomycetales. We propose bacterial growth morphology (filamentous vs. unicellular) as an additional mechanism behind the increase in Actinomycetales with increasing aridity. A trait-based approach including cell-wall thickness and growth morphology may explain the distribution of bacterial taxa across environmental gradients and help to predict patterns of bacterial community composition for a wide range of host plants.


Asunto(s)
Microbiota , Sequoia , Bacterias/genética , Microbiota/genética , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Agua
9.
BMC Genet ; 21(1): 15, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041527

RESUMEN

BACKGROUND: Effective matching of genotypes and environments is required for the species to reach optimal productivity and act effectively for carbon sequestration. A common garden experiment across five different environments was undertaken to assess genotype x environment interaction (GxE) of coast redwood in order to understand the performance of genotypes across environments. RESULTS: The quantitative genetic analysis discovered no GxE between investigated environments for diameter at breast height (DBH). However, no genetic component was detected at one environment possibly due to stressful conditions. The implementation of universal response function allowed for the identification of important environmental factors affecting species productivity. Additionally, this approach enabled us to predict the performance of species across the New Zealand environmental conditions. CONCLUSIONS: In combination with quantitative genetic analysis which identified genetically superior material, the URF model can directly identify the optimal geographical regions to maximize productivity. However, the finding of ideally uncorrelated climatic variables for species with narrow ecological amplitude is rather challenging, which complicates construction of informative URF model. This, along with a small number of tested environments, tended to overfit a prediction model which resulted in extreme predictions in untested environments.


Asunto(s)
Ambiente , Interacción Gen-Ambiente , Genotipo , Carácter Cuantitativo Heredable , Sequoia/genética , Clima , Geografía , Nueva Zelanda
12.
Oecologia ; 187(4): 897-909, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29955995

RESUMEN

To understand drivers of hydroclimate variability in north-coastal California, we obtained tree cross-sections from eleven coastal redwoods (mean age of 1232 years old) from the northern half of the species range. Tree rings from eight trees were cross-dated and sampled at sub-annual resolution for carbon isotope discrimination (Δ13C) and oxygen isotope composition (δ18O). Tree-ring Δ13C and δ18O, compared to modern climate data, demonstrate these signals primarily record summertime hydroclimate variability-primarily through variables associated with evaporative conditions and/or precipitation. Our 1100-year stable isotope chronologies showed that north-coastal California did not undergo the megadroughts observed elsewhere in California and the western United States. This result implicates extended periods of low winter precipitation, rather than growing season evaporation, as the primary driver of previous megadroughts across California and neighboring regions. Compared to cool conditions prevailing over the Northern Hemisphere during the Little Ice age (1301-1875 of the common era, CE), the frequency of isotopic events of a certain magnitude was greater during periods with warmer Northern Hemisphere temperatures such as the Medieval Climate Anomaly (900-1300 CE) and the modern period (1876 to present). This association between tree-ring isotopic variability and long-term shifts in temperatures is consistent with the expected patterns in mid-latitude hydroclimate variability expected from arctic amplification (i.e., shifts in equator-to-pole temperature differences that modify jet stream speed and amplitude) or amplified quasi-resonant wave activity (i.e., wave-patterns in high-altitude winds that become "trapped" within a certain pattern, thereby producing a longer-duration periods of drought or wetness) across mid-latitudes during the boreal summer.


Asunto(s)
Sequoia , California , Isótopos de Carbono , Clima , Isótopos de Oxígeno
13.
J Biol Phys ; 43(3): 367-379, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647777

RESUMEN

Two distinct microwave power levels and techniques have been studied in two cases: low-power microwave (LPM) irradiation on in vitro Sequoia plants and high-power microwave (HPM) exposure on recovery rates of cryostored (-196°C) Sequoia shoot apices. Experimental variants for LPM exposure included: (a) in vitro plants grown in regular conditions (at 24 ± 1°C during a 16-h light photoperiod with a light intensity of 39.06 µEm-2 s-1 photosynthetically active radiation), (b) in vitro plants grown in the anechoic chamber with controlled environment without microwave irradiation, and (c) in vitro plants grown in the anechoic chamber with LPM irradiation for various times (5, 15, 30, 40 days). In comparison to control plants, significant differences in shoot multiplication and growth parameters (length of shoots and roots) were observed after 40 days of LPM exposure. An opposite effect was achieved regarding the content of total soluble proteins, which decreased with increasing exposure time to LPM. HPM irradiation was tested as a novel rewarming method following storage in liquid nitrogen. To our knowledge, this is the first report using this type of rewarming method. Although, shoot tips subjected to HPM exposure showed 28% recovery following cryostorage compared to 44% for shoot tips rewarmed in liquid medium at 22 ± 1 °C, we consider that the method represent a basis and can be further improved. The results lead to the overall conclusion that LPM had a stimulating effect on growth and multiplication of in vitro Sequoia plants, while the HPM used for rewarming of cryopreserved apices was not effective to achieve high rates of regrowth after liquid nitrogen exposure.


Asunto(s)
Criopreservación , Microondas , Sequoia/crecimiento & desarrollo , Sequoia/efectos de la radiación , Proteínas de Plantas/análisis , Sequoia/química , Solubilidad
14.
New Phytol ; 211(1): 186-93, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26996245

RESUMEN

Polyploidy is common and an important evolutionary factor in most land plant lineages, but it is rare in gymnosperms. Coast redwood (Sequoia sempervirens) is one of just two polyploid conifer species and the only hexaploid. Evidence from fossil guard cell size suggests that polyploidy in Sequoia dates to the Eocene. Numerous hypotheses about the mechanism of polyploidy and parental genome donors have been proposed, based primarily on morphological and cytological data, but it remains unclear how Sequoia became polyploid and why this lineage overcame an apparent gymnosperm barrier to whole-genome duplication (WGD). We sequenced transcriptomes and used phylogenetic inference, Bayesian concordance analysis and paralog age distributions to resolve relationships among gene copies in hexaploid coast redwood and close relatives. Our data show that hexaploidy in coast redwood is best explained by autopolyploidy or, if there was allopolyploidy, it happened within the Californian redwood clade. We found that duplicate genes have more similar sequences than expected, given the age of the inferred polyploidization. Conflict between molecular and fossil estimates of WGD can be explained if diploidization occurred very slowly following polyploidization. We extrapolate from this to suggest that the rarity of polyploidy in gymnosperms may be due to slow diploidization in this clade.


Asunto(s)
Genoma de Planta , Filogenia , Poliploidía , Sequoia/genética , Evolución Biológica , Tracheophyta/genética
15.
Am J Bot ; 103(12): 2087-2095, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27965238

RESUMEN

PREMISE OF THE STUDY: The aboveground tissues of plants host numerous, ecologically important fungi, yet patterns in the spatial distribution of these fungi remain little known. Forest canopies in particular are vast reservoirs of fungal diversity, but intracrown variation in fungal communities has rarely been explored. Knowledge of how fungi are distributed throughout tree crowns will contribute to our understanding of interactions between fungi and their host trees and is a first step toward investigating drivers of community assembly for plant-associated fungi. Here we describe spatial patterns in fungal diversity within crowns of the world's tallest trees, coast redwoods (Sequoia sempervirens). METHODS: We took a culture-independent approach, using the Illumina MiSeq platform, to characterize the fungal assemblage at multiple heights within the crown across the geographical range of the coast redwood. KEY RESULTS: Within each tree surveyed, we uncovered evidence for vertical stratification in the fungal community; different portions of the tree crown harbored different assemblages of fungi. We also report between-tree variation in the fungal community within redwoods. CONCLUSIONS: Our results suggest the potential for vertical stratification of fungal communities in the crowns of other tall tree species and should prompt future study of the factors giving rise to this stratification.


Asunto(s)
Hongos/aislamiento & purificación , Metagenómica , Sequoia/microbiología , Biodiversidad , California , ADN de Hongos/química , ADN de Hongos/genética , Endófitos , Hongos/genética , Hongos/fisiología , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Hojas de la Planta/microbiología , Análisis de Secuencia de ADN , Árboles/microbiología
16.
J Econ Entomol ; 109(2): 785-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26743217

RESUMEN

Three hundred Reticulitermes virginicus (Banks) workers were exposed to three 1-cm3 wood blocks of either Quercus sp. (Red Oak), Populus sp. (Poplar), Pinus sp. (Pine), or Sequoia sp. (Redwood) placed into one of the three bioassay designs (no-, two-, and four-choice) for 21 d. Termite wood consumption was measured by wood weight loss, resistance class, and visual rating. Wood consumption rates were determined using four formulas in addition to two standardized visual rating scales (American Society for Testing and Materials [ASTM] and American Wood Protection Association [AWPA]) and a preference ranking obtained for each measure. The wood consumption formula, rating scale, and preference rankings were compared by bioassay design. The overall preference ranking of the four wood types as determined by the combination of all three designs was­1) Pine, 2) Red Oak, 3) Redwood, and 4) Poplar. Results indicate that bioassay design influenced both wood consumption and preference rankings. A no-choice design can determine aversion; a four-choice design the most preferred wood; and a two-choice design can illuminate the fine details of comparative preference. The different formulas employed for calculation of consumption rate influenced preference ranking in the no- and four-choice designs but not the two-choice design.


Asunto(s)
Preferencias Alimentarias , Isópteros , Madera , Animales , Conducta de Elección , Pinus , Populus , Quercus , Sequoia
17.
New Phytol ; 205(3): 1095-1105, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25385085

RESUMEN

The formation of emboli in xylem conduits can dramatically reduce hydraulic capacity and represents one of the principal mechanisms of drought-induced mortality in woody plants. However, our understanding of embolism formation and repair is constrained by a lack of tools to directly and nondestructively measure these processes at high spatial resolution. Using synchrotron-based microcomputed tomography (microCT), we examined embolism in the xylem of coast redwood (Sequoia sempervirens) saplings that were subjected to cycles of drought and rewatering. Embolism formation was observed occurring by three different mechanisms: as tracheids embolizing in wide tangential bands; as isolated tracheids in seemingly random events; and as functional groups connected to photosynthetic organs. Upon rewatering, stem water potential recovered to predrought stress levels within 24 h; however, no evidence of embolism repair was observed even after a further 2 wk under well-watered conditions. The results indicate that intertracheid air seeding is the primary mechanism by which embolism spreads in the xylem of S. sempervirens, but also show that a small number of tracheids initially become gas-filled via another mechanism. The inability of S. sempervirens saplings to reverse drought-induced embolism is likely to have important ecological impacts on this species.


Asunto(s)
Aire , Sequías , Tallos de la Planta/fisiología , Transpiración de Plantas , Sequoia/fisiología , Estrés Fisiológico , Xilema/fisiología , Gases , Sincrotrones , Árboles/fisiología , Agua , Microtomografía por Rayos X
18.
Glob Chang Biol ; 21(11): 4141-52, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26149607

RESUMEN

Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema , Dispersión de las Plantas , Sequoia/fisiología , California
19.
Am J Bot ; 102(1): 103-18, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25587153

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: The paleogeographical origin of the relict North American Sequoia sempervirens is controversial. Fossil records indicate a Neogene origin for its foliage characteristics. Although several fossils from the Miocene sediments in eastern Asia have been considered to have close affinities with the modern S. sempervirens, they lack the typical features of a leafy twig bearing linear as well as scale leaves, and the fertile shoots terminating by a cone. The taxonomic status of these fossils has remained unclear.• METHODS: New better-preserved fossils from the upper Miocene of China indicate a new species of Sequoia. This finding not only confirms the former presence of this genus in eastern Asia, but it also confirms the affinity of this Asian form to the modern relict S. sempervirens.• KEY RESULTS: The principal foliage characteristics of S. sempervirens had already originated by the late Miocene. The eastern Asian records probably imply a Beringian biogeographic track of the ancestor of S. sempervirens in the early Neogene, at a time when the land bridge was not too cool for this thermophilic conifer to spread between Asia and North America.• CONCLUSIONS: The climatic context of the new fossil Sequoia in Southeast Yunnan, based on other floristic elements of the fossil assemblage in which it is found, is presumed to be warm and humid. Following the uplift of the Qinghai-Tibet Plateau, this warm, humid climate was replaced by the present monsoonal climate with dry winter and spring. This change may have led to the disappearance of this hygrophilous conifer from eastern Asia.


Asunto(s)
Evolución Biológica , Fósiles , Dispersión de las Plantas , Sequoia/clasificación , China , Cambio Climático , Fósiles/anatomía & histología , Filogenia , Hojas de la Planta/anatomía & histología , Sequoia/anatomía & histología , Sequoia/fisiología
20.
Phys Chem Chem Phys ; 17(33): 21323-30, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25687823

RESUMEN

In this work the surface-enhanced Raman total half band widths of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Celak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.) have been measured. We have shown that surface-enhanced Raman spectroscopy (SERS) can be used to study the fast subpicosecond dynamics of DNA in the proximity of a metallic surface. The dependencies of the total half band widths and the global relaxation times, on the DNA molecular subgroup structure and on the type of genomic DNA, are reported. In our study, the full widths at half-maximum (FWHMs) for the SERS bands of genomic DNAs from different leaf tissues are typically in the wavenumber range from 15 to 55 cm(-1). Besides, it can be observed that molecular relaxation processes studied in this work have a global relaxation time smaller than 0.71 ps and larger than 0.19 ps. A comparison between different ranges of FT-Raman and SERS band parameters, respectively, corresponding to DNA extracted from leaf tissues is given. It is shown that the interaction between DNA and a metallic surface has the potential to lead to a shortening of the global relaxation times, as compared with molecular dynamics in solution. We have found that the surface dynamics of molecular subgroups in plant DNA is, in some cases, about two times faster than the solution dynamics of nucleic acids. This can be rationalized in a qualitative manner by invoking the complex landscape of the interaction energy between the molecule and the silver surface.


Asunto(s)
ADN de Plantas/análisis , Plantas/genética , Espectrometría Raman , Chrysanthemum/genética , Genoma de Planta , Hojas de la Planta/genética , Rosa/genética , Sequoia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA