Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.614
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(14): 7842-7855, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35849129

RESUMEN

Nuclease-inactivated CRISPR/Cas-based (dCas-based) systems have emerged as powerful technologies to synthetically reshape the human epigenome and gene expression. Despite the increasing adoption of these platforms, their relative potencies and mechanistic differences are incompletely characterized, particularly at human enhancer-promoter pairs. Here, we systematically compared the most widely adopted dCas9-based transcriptional activators, as well as an activator consisting of dCas9 fused to the catalytic core of the human CBP protein, at human enhancer-promoter pairs. We find that these platforms display variable relative expression levels in different human cell types and that their transactivation efficacies vary based upon the effector domain, effector recruitment architecture, targeted locus and cell type. We also show that each dCas9-based activator can induce the production of enhancer RNAs (eRNAs) and that this eRNA induction is positively correlated with downstream mRNA expression from a cognate promoter. Additionally, we use dCas9-based activators to demonstrate that an intrinsic transcriptional and epigenetic reciprocity can exist between human enhancers and promoters and that enhancer-mediated tracking and engagement of a downstream promoter can be synthetically driven by targeting dCas9-based transcriptional activators to an enhancer. Collectively, our study provides new insights into the enhancer-mediated control of human gene expression and the use of dCas9-based activators.


Asunto(s)
Sistemas CRISPR-Cas , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Activación Transcripcional , Sistemas CRISPR-Cas/genética , Epigenómica , Regulación de la Expresión Génica , Humanos , Fragmentos de Péptidos , ARN , Sialoglicoproteínas , Factores de Transcripción/genética
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658363

RESUMEN

Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.


Asunto(s)
Acidosis/sangre , Proteína HMGB1/sangre , Sepsis/sangre , Sialoglicoproteínas/sangre , Zinc/sangre , Acidosis/inmunología , Acidosis/metabolismo , Acidosis/patología , Proteínas Portadoras , Proteína HMGB1/farmacología , Humanos , Concentración de Iones de Hidrógeno , Inmunidad Innata , Lipopolisacáridos/farmacología , Polisacáridos/química , Sepsis/inmunología , Sepsis/patología , Ácidos Siálicos/química , Sialoglicoproteínas/química , Zinc/metabolismo
3.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400238

RESUMEN

An overexpression of sialic acid is an indicator of metastatic cancer, and selective detection of sialic acid shows potential for cancer diagnosis. Boronic acid is a promising candidate for this purpose because of its ability to specifically bind to sialic acid under acidic conditions. Notably, the binding strength can be easily modulated by adjusting the pH, which allows for a simple dissociation of the bound sialic acid. In this study, we developed 5-boronopicolinic acid (5-BPA)-modified magnetic particles (BMPs) to selectively capture sialic acid biomolecules. We successfully captured fetuin, a well-known sialoglycoprotein, on BMPs at >104 molecules/particle using an acetate buffer (pH 5.0). Facile dissociation then occurred when the system was changed to a pH 7.6 phosphate buffer. This capture-and-release process could be repeated at least five times. Moreover, this system could enrich fetuin by more than 20 times. In summary, BMPs are functional particles for facile purification and concentration through the selective capture of sialic acid proteins and can improve detection sensitivity compared with conventional methods. This technology shows potential for the detection of sialic acid overexpression by biological particles.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/química , Sialoglicoproteínas/metabolismo , Ácidos Borónicos/química , Fetuínas
4.
BMC Oral Health ; 24(1): 298, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431618

RESUMEN

OBJECTIVES: To determine the efficacy of a newly developed kit in dentine sialophosphoprotein (DSPP) detection and compare it with enzyme-linked immunosorbent assay (ELISA). User acceptance was also determined. MATERIALS AND METHODS: This cross-sectional study consisted of 45 subjects who were divided into 3 groups based on the severity of root resorption using radiographs: normal (RO), mild (RM), and severe (RS). DSPP in GCF samples was analyzed using both methods. Questionnaires were distributed to 30 orthodontists to evaluate future user acceptance. RESULTS: The sensitivity and specificity of the kit were 0.98 and 0.8 respectively. The DSPP concentrations measured using ELISA were the highest in the RS group (6.33 ± 0.85 ng/mL) followed by RM group (3.77 ± 0.36 ng/mL) and the RO group had the lowest concentration (2.23 ± 0.55 ng/mL). The new kit portrayed similar results as the ELISA, the optical density (OD) values were the highest in the RS group (0.62 ± 0.10) followed by RM group (0.33 ± 0.03) and the RO group (0.19 ± 0.06). The differences among all the groups were statistically significant (p < 0.05) for both methods. The Pearson correlation coefficient showed a statistically significant (p < 0.001) strong and positive correlation between DSPP concentrations and OD values. CONCLUSIONS: The new kit was validated to detect the colour intensities of different severity of root resorptions. Most of the responses to the survey were positive towards the new kit for being a safer and simpler method to detect apical root resorption.


Asunto(s)
Proteínas de la Matriz Extracelular , Resorción Radicular , Humanos , Resorción Radicular/diagnóstico por imagen , Estudios Transversales , Sialoglicoproteínas , Líquido del Surco Gingival/química , Fosfoproteínas , Biomarcadores/análisis
5.
BMC Oral Health ; 24(1): 569, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745274

RESUMEN

BACKGROUND: Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. MATERIALS AND METHODS: To determine whether Dspp+/- mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/-, and Dspp homozygous (Dspp-/-) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/- mice over time, condyles of Dspp+/- and WT mice were analyzed radiologically, histologically, and immunohistochemically. RESULTS: Micro-CT and histomorphometric analyses revealed that Dspp+/- and Dspp-/- mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp-/- mice which exhibited tooth loss, Dspp+/- mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/- mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/- mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. CONCLUSIONS: Dspp+/- mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.


Asunto(s)
Proteínas de la Matriz Extracelular , Osteoartritis , Fosfoproteínas , Sialoglicoproteínas , Trastornos de la Articulación Temporomandibular , Microtomografía por Rayos X , Animales , Osteoartritis/patología , Osteoartritis/diagnóstico por imagen , Osteoartritis/genética , Ratones , Proteínas de la Matriz Extracelular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen , Trastornos de la Articulación Temporomandibular/etiología , Trastornos de la Articulación Temporomandibular/genética , Fosfoproteínas/genética , Cóndilo Mandibular/patología , Cóndilo Mandibular/diagnóstico por imagen , Articulación Temporomandibular/patología , Articulación Temporomandibular/diagnóstico por imagen
6.
J Contemp Dent Pract ; 25(4): 313-319, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956844

RESUMEN

AIMS: This study aims to assess the synergistic effect of utilizing a bioceramic sealer, NeoPutty, with photobiomodulation (PBM) on dental pulp stem cells (DPSCs) for odontogenesis. MATERIALS AND METHODS: Dental pulp stem cells were collected from 10 premolars extracted from healthy individuals. Dental pulp stem cells were characterized using an inverted-phase microscope to detect cell shape and flow cytometry to detect stem cell-specific surface antigens. Three experimental groups were examined: the NP group, the PBM group, and the combined NP and PBM group. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) experiment was conducted to assess the viability of DPSCs. The odontogenic differentiation potential was analyzed using Alizarin red staining, RT-qPCR analysis of odontogenic genes DMP-1, DSPP, and alkaline phosphatase (ALP), and western blot analysis for detecting BMP-2 and RUNX-2 protein expression. An analysis of variance (ANOVA) followed by a post hoc t-test was employed to examine and compare the mean values of the results. RESULTS: The study showed a notable rise in cell viability when NP and PBM were used together. Odontogenic gene expression and the protein expression of BMP-2 and RUNX-2 were notably increased in the combined group. The combined effect of NeoPutty and PBM was significant in enhancing the odontogenic differentiation capability of DPSCs. CONCLUSION: The synergistic effect of NeoPutty and PBM produced the most positive effect on the cytocompatibility and odontogenic differentiation potential of DPSCs. CLINICAL SIGNIFICANCE: Creating innovative regenerative treatments to efficiently and durably repair injured dental tissues. How to cite this article: Alshawkani HA, Mansy M, Al Ankily M, et al. Regenerative Potential of Dental Pulp Stem Cells in Response to a Bioceramic Dental Sealer and Photobiomodulation: An In Vitro Study. J Contemp Dent Pract 2024;25(4):313-319.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular , Pulpa Dental , Terapia por Luz de Baja Intensidad , Odontogénesis , Células Madre , Pulpa Dental/citología , Humanos , Células Madre/efectos de los fármacos , Terapia por Luz de Baja Intensidad/métodos , Diferenciación Celular/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Materiales de Obturación del Conducto Radicular/farmacología , Fosfatasa Alcalina/metabolismo , Técnicas In Vitro , Supervivencia Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Cerámica , Proteínas de la Matriz Extracelular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Sialoglicoproteínas , Fosfoproteínas
7.
J Biol Chem ; 298(8): 102220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780838

RESUMEN

WW domain-containing E3 Ubiquitin-protein ligase 2 (WWP2) has been found to positively regulate odontoblastic differentiation by monoubiquitinating the transcription factor Kruppel-like factor 5 (KLF5) in a cell culture system. However, the in vivo role of WWP2 in mouse teeth remains unknown. To explore this, here we generated Wwp2 knockout (Wwp2 KO) mice. We found that molars in Wwp2 KO mice exhibited thinner dentin, widened predentin, and reduced numbers of dentinal tubules. In addition, expression of the odontoblast differentiation markers Dspp and Dmp1 was decreased in the odontoblast layers of Wwp2 KO mice. These findings demonstrate that WWP2 may facilitate odontoblast differentiation and dentinogenesis. Furthermore, we show for the first time that phosphatase and tensin homolog (PTEN), a tumor suppressor, is expressed in dental papilla cells and odontoblasts of mouse molars and acts as a negative regulator of odontoblastic differentiation. Further investigation indicated that PTEN is targeted by WWP2 for degradation during odontoblastic differentiation. We demonstrate PTEN physically interacts with and inhibits the transcriptional activity of KLF5 on Dspp and Dmp1. Finally, we found WWP2 was able to suppress the interaction between PTEN and KLF5, which diminished the inhibition effect of PTEN on KLF5. Taken together, this study confirms the essential role of WWP2 and the WWP2-PTEN-KLF5 signaling axis in odontoblast differentiation and dentinogenesis in vivo.


Asunto(s)
Dentinogénesis , Factores de Transcripción de Tipo Kruppel , Odontoblastos , Fosfohidrolasa PTEN , Ubiquitina-Proteína Ligasas , Animales , Diferenciación Celular , Dentina/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Odontoblastos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Cell Sci ; 134(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33526711

RESUMEN

There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Sialoglicoproteínas , Senescencia Celular/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Interleucina-1 , Queratinocitos
9.
Anal Chem ; 95(50): 18388-18397, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38069741

RESUMEN

Determination of the relative expression levels of the α2,3/α2,6-sialic acid linkage isomers on glycoproteins is critical to the analysis of various human diseases such as cancer, inflammation, and viral infection. However, it remains a challenge to separate and differentiate site-specific linkage isomers at the glycopeptide level. Some derivatization methods on the carboxyl group of sialic acid have been developed to generate mass differences between linkage isomers. In this study, we utilized chemical derivatization that occurred on the vicinal diol of sialic acid to separate linkage isomers on a reverse-phase column using a relatively short time. 2-Aminobenzamide (2AB) labeling derivatization, including periodate oxidation and reductive amination, took only ∼3 h and achieved high labeling efficiency (>90%). Within a 66 min gradient, the sialic acid linkage isomers of 2AB-labeled glycopeptides from model glycoproteins can be efficiently resolved compared to native glycopeptides. Two different methods, neuraminidase digestion and higher-energy collision dissociation tandem mass spectrometry (HCD-MS2) fragmentation, were utilized to differentiate those isomeric peaks. By calculating the diagnostic oxonium ion ratio of Gal2ABNeuAc and 2ABNeuAc fragments, significant differences in chromatographic retention times and in mass spectral peak abundances were observed between linkage isomers. Their corresponding MS2 PCA plots also helped to elucidate the linkage information. This method was successfully applied to human blood serum. A total of 514 2AB-labeled glycopeptide structures, including 152 sets of isomers, were identified, proving the applicability of this method in linkage-specific structural characterization and relative quantification of sialic acid isomers.


Asunto(s)
Ácido N-Acetilneuramínico , Espectrometría de Masas en Tándem , Humanos , Ácido N-Acetilneuramínico/química , Espectrometría de Masas en Tándem/métodos , Sialoglicoproteínas , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Glicoproteínas , Glicopéptidos/análisis , Polisacáridos/química
10.
Connect Tissue Res ; 64(1): 53-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816114

RESUMEN

PURPOSE: Previous studies demonstrated that the exposure of primary dental pulp (DP) cultures to fibroblast growth factor 2 (FGF2) between days 3-7 exerted significant and long-lasting stimulatory effects on odontoblast differentiation and Dspp expression. These effects involved the increased expression of components of bone morphogenetic protein (BMP) signaling and were reverted by a BMP inhibitor noggin. FGF2 also transiently stimulated osteoblast differentiation and the expression of Ibsp and Dmp1. The present study aimed to further explore interactions between BMP and FGF signaling during odontoblast and osteoblast differentiation in DP cultures. MATERIALS AND METHODS: Cultures were established using DP tissue isolated from non-transgenic and fluorescent reporter (DSPP-Cerulean, BSP-GFP, and DMP1-mCherry) transgenic mice and exposed to BMP2, FGF2, SU5402 (an FGF receptor inhibitor), and noggin between days 3-7. Mineralization, gene expression, fluorescent protein expression, and odontoblast formation were examined using xylenol orange, quantitative PCR, fluorometric analysis, and immunocytochemistry, respectively. RESULTS: BMP2 activated SMAD1/5/8 but not ERK1/2 signaling, whereas FGF2 exerted opposite effects. BMP2 did not affect mineralization, the expression of Ibsp and Dmp1, and the percentage of DSPP-Cerulean+ odontoblasts but significantly increased Dspp and DSPP-Cerulean. In cultures exposed to BMP2 and FGF2, respectively, both SU5402 and noggin led to long-lasting decreases in Dspp and DSPP-Cerulean and transient decreases in Dmp1 and DMP1-mCherry without affecting Ibsp and BSP-GFP. CONCLUSION: BMP2 and FGF2 exerted reciprocal stimulatory effects on odontoblast differentiation, whereas their effects on osteoblast differentiation were mediated independently. These data will further elucidate the perspectives of using BMP2 and FGF2 for dentin regeneration/repair.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Odontoblastos , Ratones , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ratones Transgénicos , Proteínas de la Matriz Extracelular/metabolismo , Diferenciación Celular , Transducción de Señal , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Sialoglicoproteínas/metabolismo
11.
Oral Dis ; 29(6): 2394-2400, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36597617

RESUMEN

The present study aims to investigate the mutation in a Chinese family with dentin dysplasia type II (DD-II) and to summarize mutation hotspots, clinical manifestations, and disease management strategies. Phenotype analysis, clinical intervention, mutation screening, and cosegregation analysis within the enrolled family were performed. A summary of the reported mutations in the dentin phosphoprotein (DPP) region of dentin sialophosphoprotein (DSPP) was analyzed. Pathogenicity prediction analysis of the physical properties and function of DSPP variants was performed by bioinformatic processing. Clinical management strategies are discussed. A novel pathogenic mutation (c.2035delA) in the DPP region of DSPP was identified, which was cosegregated in the family. The immature permanent teeth of patients with DD-II presented with X-shaped root canal phenotypes. Most of the identified mutations for DD-II were clustered in the DPP region between nucleotides 1686-2134. Points of differential diagnosis, clinical interventions, and management strategies are proposed. This study revealed a novel DSPP frameshift mutation and presented new clinical features of DD-II. The locus involving nucleotides 1686-2134 of DSPP may represent a mutational hotspot for the disease. Appropriate management of DD-II at different stages is important to avoid the development of secondary dental lesions.


Asunto(s)
Displasia de la Dentina , Dentinogénesis Imperfecta , Humanos , Dentina , Displasia de la Dentina/genética , Displasia de la Dentina/terapia , Displasia de la Dentina/patología , Dentinogénesis Imperfecta/genética , Dentinogénesis Imperfecta/terapia , Manejo de la Enfermedad , Proteínas de la Matriz Extracelular/genética , Mutación del Sistema de Lectura , Hiperplasia/patología , Mutación , Nucleótidos , Fosfoproteínas/genética , Sialoglicoproteínas/genética
12.
Oral Dis ; 29(4): 1644-1656, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35199415

RESUMEN

OBJECTIVES: This study aimed to identify formation of tubular dentin induced by transforming growth factor-ß (TGF-ß) and bone morphogenic protein (BMP) signaling pathway in dental epithelial cells. METHODS: We collected conditioned medium (CM) of rTGF-ß1/rBMP-2-treated HAT-7 and treated to MDPC-23 cells. The expression levels of odontoblast differentiation markers, KLF4, DMP1, and DSP were evaluated by real-time PCR and Western blot analysis. To evaluate whether CM of rTGF-ß1/rBMP-2 induces tubular dentin formation, we made a beagle dog tooth defect model. RESULTS: Here, we show that Cpne7 is regulated by Smad4-dependent TGF-ß1/BMP2 signaling pathway in dental epithelial cells. CM of rTGF-ß1/rBMP-2 treated HAT-7 or rCPNE7 raises the expression levels of KLF4, DMP1, and DSP in MDPC-23 cells. When rTGF-ß1 or rBMP-2 is directly treated to MDPC-23 cells, however, expression levels of Cpne7-regulated genes remain unchanged. In a beagle dog defect model, application of rTGF-ß1/BMP2-treated CM resulted in tubular tertiary dentin mixed with osteodentin at cavity-prepared sites, while rTGF-ß1 group exhibited homogenous osteodentin. CONCLUSIONS: Taken together, Smad4-dependent TGF-ß1/BMP2 signaling regulates Cpne7 in dental epithelial cells, and CPNE7 protein secreted from pre-ameloblasts mediates odontoblast differentiation via epithelial-mesenchymal interaction.


Asunto(s)
Proteínas de la Matriz Extracelular , Factor de Crecimiento Transformador beta1 , Perros , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Sialoglicoproteínas/genética , Fosfoproteínas/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Odontoblastos , Transducción de Señal , Células Epiteliales/metabolismo , Diferenciación Celular , Dentina/metabolismo
13.
Mar Drugs ; 21(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37999397

RESUMEN

Several sialoglycopeptides were isolated from several fish eggs and exerted anti-osteoporosis effects. However, few papers have explored sialoglycopeptide from tuna eggs (T-ES). Here, a novel T-ES was prepared through extraction with KCl solution and subsequent enzymolysis. Pure T-ES was obtained through DEAE-Sepharose ion exchange chromatography and sephacryl S-300 gel filtration chromatography. The T-ES was composed of 14.07% protein, 73.54% hexose, and 8.28% Neu5Ac, with a molecular weight of 9481 Da. The backbone carbohydrate in the T-ES was →4)-ß-D-GlcN-(1→3)-α-D-GalN-(1→3)-ß-D-Glc-(1→2)-α-D-Gal-(1→2)-α-D-Gal-(1→3)-α-D-Man-(1→, with two branches of ß-D-GlcN-(1→ and α-D-GalN-(1→ linking at o-4 in →2,4)-α-D-Gal-(1→. Neu5Ac in the T-ES was linked to the branch of α-D-GlcN-(1→. A peptide chain, Ala-Asp-Asn-Lys-Ser*-Met-Ile that was connected to the carbohydrate chain through O-glycosylation at the -OH of serine. Furthermore, in vitro data revealed that T-ES could remarkably enhance bone density, bone biomechanical properties, and bone microstructure in SAMP mice. The T-ES elevated serum osteogenesis-related markers and reduced bone resorption-related markers in serum and urine. The present study's results demonstrated that T-ES, a novel sialoglycopeptide, showed significant anti-osteoporosis effects, which will accelerate the utilization of T-ES as an alternative marine drug or functional food for anti-osteoporosis.


Asunto(s)
Sialoglicoproteínas , Atún , Humanos , Ratones , Animales , Secuencia de Carbohidratos , Carbohidratos , Hexosas
14.
Clin Oral Investig ; 27(3): 1207-1214, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36208328

RESUMEN

OBJECTIVES: To explore the inflammatory and differentiation response in inflamed dental pulp cells (DPCs) induced by lipopolysaccharide (LPS) under different conditions with Biodentine and mineral trioxide aggregate (MTA) treatment. MATERIALS AND METHODS: DPCs were treated with 0.001-1 µg/mL LPS for different periods to induce inflammation. Normal and inflamed DPCs were further treated with 0.14 mg/mL Biodentine or 0.13 mg/mL MTA for different periods. mRNA expression level of IL-6, IL-8 and ALP were analysed by qPCR. DSPP protein expression was detected by western blot. The data were analysed by the Mann-Whitney test, unpaired t test or two-way ANOVA. RESULTS: After treatment for different times and with different concentrations of LPS, different severity of pulp inflammation was revealed by the expressions of IL-6 and IL-8. Higher concentrations of LPS induced higher IL-6 and IL-8 expressions, and these expressions first increased and then decreased (p < 0.0001). At 96 and 192 h, Biodentine significantly suppressed IL-6 expression in both normal and inflamed DPCs (p < 0.05). At 48 and 96 h, Biodentine suppressed ALP expression in both normal and inflamed DPCs (p < 0.05). At 48 and 96 h, Biodentine induced DSPP expressions in both normal and inflamed DPCs (p < 0.05). CONCLUSION: Biodentine enhanced more DSPP differentiation of both normal and inflamed DPCs under different treatment durations than MTA. CLINICAL RELEVANCE: The prognosis of vital pulp therapy may depend on the severity of pulp inflammation which is difficult to be determined in clinical settings. Therefore, Biodentine may enhance odontogenic differentiation in different severity of pulp inflammation imply its clinical indications.


Asunto(s)
Pulpa Dental , Lipopolisacáridos , Humanos , Compuestos de Aluminio/farmacología , Compuestos de Calcio/farmacología , Combinación de Medicamentos , Inflamación/tratamiento farmacológico , Interleucina-6 , Interleucina-8 , Óxidos/farmacología , Silicatos/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo
15.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203331

RESUMEN

Podocalyxin (PODXL) overexpression is associated with poor clinical outcomes in various tumors. PODXL is involved in tumor malignant progression through the promotion of invasiveness and metastasis. Therefore, PODXL is considered a promising target of monoclonal antibody (mAb)-based therapy. However, PODXL also plays an essential role in normal cells, such as vascular and lymphatic endothelial cells. Therefore, cancer specificity or selectivity is required to reduce adverse effects on normal cells. Here, we developed an anti-PODXL cancer-specific mAb (CasMab), PcMab-6 (IgG1, kappa), by immunizing mice with a soluble PODXL ectodomain derived from a glioblastoma LN229 cell. PcMab-6 reacted with the PODXL-positive LN229 cells but not with PODXL-knockout LN229 cells in flow cytometry. Importantly, PcMab-6 recognized pancreatic ductal adenocarcinoma (PDAC) cell lines (MIA PaCa-2, Capan-2, and PK-45H) but did not react with normal lymphatic endothelial cells (LECs). In contrast, one of the non-CasMabs, PcMab-47, showed high reactivity to both the PDAC cell lines and LECs. Next, we engineered PcMab-6 into a mouse IgG2a-type (PcMab-6-mG2a) and a humanized IgG1-type (humPcMab-6) mAb and further produced the core fucose-deficient types (PcMab-6-mG2a-f and humPcMab-6-f, respectively) to potentiate the antibody-dependent cellular cytotoxicity (ADCC). Both PcMab-6-mG2a-f and humPcMab-6-f exerted ADCC and complement-dependent cellular cytotoxicity in the presence of effector cells and complements, respectively. In the PDAC xenograft model, both PcMab-6-mG2a-f and humPcMab-6-f exhibited potent antitumor effects. These results indicated that humPcMab-6-f could apply to antibody-based therapy against PODXL-expressing pancreatic cancers.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sialoglicoproteínas , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Xenoinjertos , Células Endoteliales , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunoglobulina G
16.
J Biol Chem ; 296: 100436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610546

RESUMEN

While details remain unclear, initiation of woven bone mineralization is believed to be mediated by collagen and potentially nucleated by bone sialoprotein (BSP). Interestingly, our recent publication showed that BSP and type XI collagen form complexes in mineralizing osteoblastic cultures. To learn more, we examined the protein composition of extracellular sites of de novo hydroxyapatite deposition which were enriched in BSP and Col11a1 containing an alternatively spliced "6b" exonal sequence. An alternate splice variant "6a" sequence was not similarly co-localized. BSP and Col11a1 co-purify upon ion-exchange chromatography or immunoprecipitation. Binding of the Col11a1 "6b" exonal sequence to bone sialoprotein was demonstrated with overlapping peptides. Peptide 3, containing three unique lysine-triplet sequences, displayed the greatest binding to osteoblastic cultures; peptides containing fewer lysine triplet motifs or derived from the "6a" exon yielded dramatically lower binding. Similar results were obtained with 6-carboxyfluorescein (FAM)-conjugated peptides and western blots containing extracts from osteoblastic cultures. Mass spectroscopic mapping demonstrated that FAM-peptide 3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-peptide 3 localized to biomineralization foci (site of BSP) and to nucleoli (site of nucleolin). In bone sections, biotin-labeled peptide 3 bound to sites of new bone formation which were co-labeled with anti-BSP antibodies. These results establish the fluorescent peptide 3 conjugate as the first nonantibody-based method to identify BSP on western blots and in/on cells. Further examination of the "6b" splice variant interactions will likely reveal new insights into bone mineralization during development.


Asunto(s)
Calcificación Fisiológica/fisiología , Colágeno Tipo XI/metabolismo , Osteopontina/metabolismo , Animales , Huesos/metabolismo , Calcificación Fisiológica/genética , Colágeno/metabolismo , Colágeno Tipo XI/genética , Fluoresceínas/química , Sialoproteína de Unión a Integrina/metabolismo , Masculino , Osteoblastos/metabolismo , Osteopontina/genética , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Sialoglicoproteínas/metabolismo , Nucleolina
17.
Biol Reprod ; 106(6): 1143-1158, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35284933

RESUMEN

Podocalyxin (PODXL) is a newly identified key negative regulator of human endometrial receptivity, specifically down-regulated in the luminal epithelium at receptivity to permit embryo implantation. Here, we bioinformatically compared the molecular characteristics of PODXL among the human, rhesus macaque, and mouse, determined by immunohistochemistry and in situ hybridization (mouse tissues) whether endometrial PODXL expression is conserved across the three species and examined if PODXL inhibits mouse embryo attachment in vitro. The PODXL gene, mRNA, and protein sequences showed greater similarities between humans and macaques than with mice. In all species, PODXL was expressed in endometrial luminal/glandular epithelia and endothelia. In macaques (n = 9), luminal PODXL was significantly down-regulated when receptivity is developed, consistent with the pattern found in women. At receptivity, PODXL was also reduced in shallow glands, whereas endothelial expression was unchanged across the menstrual cycle. In mice, endometrial PODXL did not vary considerably across the estrous cycle (n = 16); however, around embryo attachment on d4.5 of pregnancy (n = 4), luminal PODXL was greatly reduced especially near the site of embryo attachment. Mouse embryos failed to attach or thrive when co-cultured on a monolayer of Ishikawa cells overexpressing PODXL. Thus, endometrial luminal PODXL expression is down-regulated for embryo implantation in all species examined, and PODXL inhibits mouse embryo implantation. Rhesus macaques share greater conservations with humans than mice in PODXL molecular characteristics and regulation, thus represent a better animal model for functional studies of endometrial PODXL for treatment of human fertility.


Asunto(s)
Implantación del Embrión , Endometrio , Sialoglicoproteínas , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Femenino , Humanos , Macaca mulatta , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Ratones , Embarazo , Sialoglicoproteínas/genética , Sialoglicoproteínas/fisiología
18.
FASEB J ; 35(9): e21813, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390512

RESUMEN

Cell adhesion is tightly controlled in multicellular organisms, for example, through proteolytic ectodomain shedding of the adhesion-mediating cell surface transmembrane proteins. In the brain, shedding of cell adhesion proteins is required for nervous system development and function, but the shedding of only a few adhesion proteins has been studied in detail in the mammalian brain. One such adhesion protein is the transmembrane protein endoglycan (PODXL2), which belongs to the CD34-family of highly glycosylated sialomucins. Here, we demonstrate that endoglycan is broadly expressed in the developing mouse brains and is proteolytically shed in vitro in mouse neurons and in vivo in mouse brains. Endoglycan shedding in primary neurons was mediated by the transmembrane protease a disintegrin and metalloprotease 10 (ADAM10), but not by its homolog ADAM17. Functionally, endoglycan deficiency reduced the branching of neurites extending from primary neurons in vitro, whereas deletion of ADAM10 had the opposite effect and increased neurite branching. Taken together, our study discovers a function for endoglycan in neurite branching, establishes endoglycan as an ADAM10 substrate and suggests that ADAM10 cleavage of endoglycan may contribute to neurite branching.


Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Moléculas de Adhesión Celular/metabolismo , Desintegrinas/metabolismo , Proteínas de la Membrana/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Sialoglicoproteínas/metabolismo , Proteína ADAM17/metabolismo , Animales , Encéfalo/metabolismo , Adhesión Celular/fisiología , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Proteolisis
19.
Exp Cell Res ; 407(2): 112825, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34506759

RESUMEN

Podocyte injury is the hallmark of proteinuric glomerular diseases. Notch3 is neo-activated simultaneously in damaged podocytes and podocyte's progenitor cells of FSGS, indicating a unique role of Notch3. We previously showed that activation of cAMP-PKA pathway alleviated podocyte injury possibly via inhibiting Notch3 expression. However, the mechanisms are unknown. In the present study, Notch3 signaling was significantly activated in ADR-induced podocytes in vitro and in PAN nephrosis rats and patients with idiopathic FSGS in vivo, concomitantly with podocyte dedifferentiation. In cultured podocytes, pCPT-cAMP, a selective cAMP-PKA activator, dramatically blocked ADR-induced activation of Notch3 signaling as well as inhibition of cAMP-PKA pathway, thus alleviating the decreased cell viability and podocyte dedifferentiation. Bioinformatics analysis revealed EP300/CBP, a transcriptional co-activator, as a central hub for the crosstalk between these two signaling pathways. Additionally, CREB/KLF15 in cAMP-PKA pathway competed with RBP-J the major transcriptional factor of Notch3 signaling for binding to EP300/CBP. EP300/CBP siRNA significantly inhibited these two signaling transduction pathways and disrupted the interactions between the above major transcriptional factors. These data indicate a crucial role of EP300/CBP in regulating the crosstalk between cAMP-PKA pathway and Notch3 signaling and modulating the phenotypic change of podocytes, and enrich the reno-protective mechanisms of cAMP-PKA pathway.


Asunto(s)
Desdiferenciación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Fragmentos de Péptidos/metabolismo , Podocitos/patología , Receptor Notch3/metabolismo , Sialoglicoproteínas/metabolismo , Adulto , Animales , Apoptosis , Biomarcadores/metabolismo , Proliferación Celular , Células Cultivadas , Proteína p300 Asociada a E1A/genética , Femenino , Regulación de la Expresión Génica , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Masculino , Ratones , Fragmentos de Péptidos/genética , Podocitos/metabolismo , Pronóstico , Ratas , Ratas Sprague-Dawley , Receptor Notch3/genética , Sialoglicoproteínas/genética
20.
Nutr Metab Cardiovasc Dis ; 32(10): 2424-2438, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096977

RESUMEN

BACKGROUND AND AIMS: Low-grade chronic inflammation was reported to serve as a distinctive pathophysiologic feature of coronary artery disease (CAD), the leading cause of death around the world. Herein, the current study aimed to explore whether and how microRNA-34c-5p (miR-34c-5p), a miRNA enriched in extracellular vesicles (EVs) originated from the activated platelet (PLT-EVs), affects the inflammation of human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS: HCAECs were established as an in vitro cell model using oxidized low-density lipoprotein (ox-LDL). miR-34c-5p, an abundant miRNA in PLT-EVs, can be transferred to HCAECs and target PODXL by binding to its 3'UTR. Gain- and loss-of-function experiments of miR-34c-5p and podocalyxin (PODXL) were performed in ox-LDL-induced HCAECs. Subsequently, HCAECs were subjected to co-culture with PLT-EVs, followed by detection of the expression patterns of key pro-inflammatory factors. Either miR-34c-5p mimic or PLT-EVs harboring miR-34c-5p attenuated the ox-LDL-evoked inflammation in HCAECs by suppressing interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α). By blocking the P38 MAPK signaling pathway, miR-34c-5p-mediated depletion of PODXL contributed to protection against ox-LDL-induced inflammation. In vitro findings were further validated by findings observed in ApoE knock-out mice. Additionally, miR-34c-5p in PLT-EVs showed an athero-protective role in the murine model. CONCLUSION: Altogether, our findings highlighted that miR-34c-5p in PLT-EVs could alleviate inflammation response in HCAECs by targeting PODXL and inactivation of the P38 MAPK signaling pathway.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Regiones no Traducidas 3' , Animales , Apolipoproteínas E/genética , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Interleucina-1beta , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Sialoglicoproteínas , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA