Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.996
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37769258

RESUMEN

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Asunto(s)
Heterópteros , Simbiosis , Masculino , Animales , Simbiosis/fisiología , Semen , Sistema Digestivo/microbiología , Insectos , Heterópteros/fisiología , Bacterias/genética , Metamorfosis Biológica
2.
PLoS Pathog ; 17(11): e1009770, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784388

RESUMEN

PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.


Asunto(s)
Anopheles/fisiología , Sistemas CRISPR-Cas , Proteínas de Insectos/metabolismo , Malaria/parasitología , Mosquitos Vectores/crecimiento & desarrollo , Plasmodium/crecimiento & desarrollo , Reproducción , Animales , Bacterias/crecimiento & desarrollo , Sistema Digestivo/microbiología , Femenino , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Masculino , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología
3.
Proc Natl Acad Sci U S A ; 117(32): 19347-19358, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723830

RESUMEN

Bacterial intracellular symbiosis (endosymbiosis) is widespread in nature and impacts many biological processes. In holometabolous symbiotic insects, metamorphosis entails a complete and abrupt internal reorganization that creates a constraint for endosymbiont transmission from larvae to adults. To assess how endosymbiosis copes-and potentially evolves-throughout this major host-tissue reorganization, we used the association between the cereal weevil Sitophilus oryzae and the bacterium Sodalis pierantonius as a model system. S. pierantonius are contained inside specialized host cells, the bacteriocytes, that group into an organ, the bacteriome. Cereal weevils require metabolic inputs from their endosymbiont, particularly during adult cuticle synthesis, when endosymbiont load increases dramatically. By combining dual RNA-sequencing analyses and cell imaging, we show that the larval bacteriome dissociates at the onset of metamorphosis and releases bacteriocytes that undergo endosymbiosis-dependent transcriptomic changes affecting cell motility, cell adhesion, and cytoskeleton organization. Remarkably, bacteriocytes turn into spindle cells and migrate along the midgut epithelium, thereby conveying endosymbionts to midgut sites where future mesenteric caeca will develop. Concomitantly, endosymbiont genes encoding a type III secretion system and a flagellum apparatus are transiently up-regulated while endosymbionts infect putative stem cells and enter their nuclei. Infected cells then turn into new differentiated bacteriocytes and form multiple new bacteriomes in adults. These findings show that endosymbiosis reorganization in a holometabolous insect relies on a synchronized host-symbiont molecular and cellular "choreography" and illustrates an adaptive feature that promotes bacteriome multiplication to match increased metabolic requirements in emerging adults.


Asunto(s)
Enterobacteriaceae/fisiología , Simbiosis , Gorgojos/crecimiento & desarrollo , Gorgojos/microbiología , Animales , Fenómenos Fisiológicos Bacterianos , Evolución Biológica , Sistema Digestivo/microbiología , Endófitos/genética , Endófitos/aislamiento & purificación , Endófitos/fisiología , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Femenino , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Masculino , Metamorfosis Biológica , Gorgojos/fisiología
4.
Mol Microbiol ; 116(1): 168-183, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33567149

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC), an enteropathogen that colonizes in the intestine, causes severe diarrhea and hemorrhagic colitis in humans by the expression of the type III secretion system (T3SS) and Shiga-like toxins (Stxs). However, how EHEC can sense and respond to the changes in the alimentary tract and coordinate the expression of these virulence genes remains elusive. The T3SS-related genes are known to be regulated by the locus of enterocyte effacement (LEE)-encoded regulators, such as Ler, as well as non-LEE-encoded regulators in response to different environmental cues. Herein, we report that OmpR, which participates in the adaptation of E. coli to osmolarity and pH alterations, is required for EHEC infection in Caenorhabditis elegans. OmpR protein was able to directly bind to the promoters of ler and stx1 (Shiga-like toxin 1) and regulate the expression of T3SS and Stx1, respectively, at the transcriptional level. Moreover, we demonstrated that the expression of ler in EHEC is in response to the intestinal environment and is regulated by OmpR in C. elegans. Taken together, we reveal that OmpR is an important regulator of EHEC which coordinates the expression of virulence factors during gastrointestinal infection in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Caenorhabditis elegans/microbiología , Escherichia coli Enterohemorrágica/patogenicidad , Toxina Shiga I/biosíntesis , Transactivadores/genética , Factores de Virulencia/biosíntesis , Animales , Proteínas Bacterianas/metabolismo , Sistema Digestivo/microbiología , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Toxina Shiga I/genética , Transactivadores/biosíntesis , Transactivadores/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética , Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética
5.
PLoS Pathog ; 16(4): e1008440, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32294143

RESUMEN

In flea-borne plague, blockage of the flea's foregut by Yersinia pestis hastens transmission to the mammalian host. Based on microscopy observations, we first suggest that flea blockage results from primary infection of the foregut and not from midgut colonization. In this model, flea infection is characterized by the recurrent production of a mass that fills the lumen of the proventriculus and encompasses a large number of Y. pestis. This recurrence phase ends when the proventricular cast is hard enough to block blood ingestion. We further showed that ymt (known to be essential for flea infection) is crucial for cast production, whereas the hmsHFRS operon (known to be essential for the formation of the biofilm that blocks the gut) is needed for cast consolidation. By screening a library of mutants (each lacking a locus previously known to be upregulated in the flea gut) for biofilm formation, we found that rpiA is important for flea blockage but not for colonization of the midgut. This locus may initially be required to resist toxic compounds within the proventricular cast. However, once the bacterium has adapted to the flea, rpiA helps to form the biofilm that consolidates the proventricular cast. Lastly, we used genetic techniques to demonstrate that ribose-5-phosphate isomerase activity (due to the recent gain of a second copy of rpiA (y2892)) accentuated blockage but not midgut colonization. It is noteworthy that rpiA is an ancestral gene, hmsHFRS and rpiA2 were acquired by the recent ancestor of Y. pestis, and ymt was acquired by Y. pestis itself. Our present results (i) highlight the physiopathological and molecular mechanisms leading to flea blockage, (ii) show that the role of a gene like rpiA changes in space and in time during an infection, and (iii) emphasize that evolution is a gradual process punctuated by sudden jumps.


Asunto(s)
Insectos Vectores/microbiología , Peste/transmisión , Siphonaptera/microbiología , Yersinia pestis/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Sistema Digestivo/microbiología , Femenino , Humanos , Insectos Vectores/fisiología , Masculino , Ratones , Operón , Peste/microbiología , Siphonaptera/fisiología , Yersinia pestis/genética
6.
Exp Parasitol ; 232: 108189, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34848244

RESUMEN

Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.


Asunto(s)
Helmintos/fisiología , Enfermedades Inflamatorias del Intestino/terapia , Animales , Sistema Digestivo/microbiología , Sistema Digestivo/parasitología , Microbioma Gastrointestinal/fisiología , Helmintos/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/inmunología , Metaboloma/fisiología , Ratones , Modelos Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/parasitología
7.
Infect Immun ; 89(10): e0027421, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097471

RESUMEN

The pathology associated with Clostridioides difficile disease is caused in large part by TcdB, an intracellular bacterial toxin that inactivates small GTPases. Despite C. difficile causing enteric disease, antitoxin IgG is a clear correlate of protection against infection-associated pathology. Immunization with TcdB-based immunogens or passive transfer of monoclonal antibodies specific for the TcdB carboxy-terminal domain (CTD) confers protection following C. difficile infection. Whether the mechanism by which circulating IgG is delivered to the gut depends on specific receptor-mediated transport or is solely reflective of infection-induced damage to the gut remains unclear. Here, we tested the hypothesis that neonatal Fc receptor (FcRn) is required for the delivery of systemic TcdB-specific IgG to the gut and protection against C. difficile-associated pathology. FcRn-expressing mice and FcRn-deficient littermates were immunized subcutaneously with Alhydrogel adjuvant-adsorbed CTD before challenge with live C. difficile spores. FcRn was required for the delivery of systemic TcdB-specific IgG to the gut and for vaccine-induced protection against C. difficile-associated disease. The lack of FcRn expression had minimal effects on the composition of the gut microbiome and did not affect susceptibility to C. difficile infection in nonimmunized mice. In further experiments, intraperitoneal injection of immune sera in FcRn-deficient mice led to the transport of protective IgG to the gut independently of infection, confirming a reported method of bypassing the FcRn. Our results reveal an FcRn-dependent mechanism by which systemic immunization-induced IgG protects the gut during enteric C. difficile infection. These findings may be beneficial for the targeting of C. difficile-specific IgG to the gut.


Asunto(s)
Clostridioides difficile/inmunología , Infecciones por Clostridium/inmunología , Sistema Digestivo/inmunología , Sistema Digestivo/microbiología , Susceptibilidad a Enfermedades/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoglobulina G/inmunología , Receptores Fc/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Antitoxinas/inmunología , Toxinas Bacterianas/inmunología , Infecciones por Clostridium/microbiología , Susceptibilidad a Enfermedades/microbiología , Enterotoxinas/inmunología , Femenino , Inmunidad/inmunología , Inmunización/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Vacunación/métodos
8.
Annu Rev Genet ; 47: 377-404, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24016187

RESUMEN

The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.


Asunto(s)
Sistema Digestivo/anatomía & histología , Drosophila melanogaster/anatomía & histología , Animales , Dieta , Digestión , Sistema Digestivo/inmunología , Sistema Digestivo/inervación , Sistema Digestivo/microbiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/inmunología , Drosophila melanogaster/fisiología , Metabolismo Energético , Sistema Nervioso Entérico/fisiología , Células Enteroendocrinas/fisiología , Células Epiteliales/citología , Hormonas Gastrointestinales/fisiología , Interacciones Huésped-Patógeno , Absorción Intestinal , Larva , Longevidad , Moco/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-33464198

RESUMEN

Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of Heterorhabditis entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family Morganellacea, and to the genus Photorhabdus. Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to Photorhabdus akhursti, that Q614T is closely related to Photorhabdus heterorhabditis, and that PB68.1T is closely related to Photorhabdus australis. In silico genomic comparisons confirm these observations: BA1T and P. akhursti 15138T share 68.8 % digital DNA-DNA hybridization (dDDH), Q614T and P. heterorhabditis SF41T share 75.4 % dDDH, and PB68.1T and P. australis DSM 17609T share 76.6  % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described Photorhabdus species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus Photorhabdus, Q614T as a new subspecies within P. heterorhabditis, and PB68.1T as a new subspecies within P. australis. Hence, the following names are proposed for these strains: Photorhabdus aegyptia sp. nov. with the type strain BA1T(=DSM 111180T=CCOS 1943T=LMG 31957T), Photorhabdus heterorhabditis subsp. aluminescens subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis) and Photorhabdus australis subsp. australis subsp. nov. with DSM17609T as the type strain (currently classified as P. australis).


Asunto(s)
Nematodos/microbiología , Photorhabdus/clasificación , Filogenia , Animales , Australia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Sistema Digestivo/microbiología , Egipto , Hibridación de Ácido Nucleico , Photorhabdus/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tailandia
10.
PLoS Pathog ; 14(5): e1007043, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29772025

RESUMEN

Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.


Asunto(s)
Trypanosoma/crecimiento & desarrollo , Trypanosoma/fisiología , Animales , División Celular/fisiología , Culicidae/parasitología , Sistema Digestivo/microbiología , Vectores de Enfermedades , Flagelos/metabolismo , Flagelos/fisiología , Estadios del Ciclo de Vida/fisiología , Glándulas Salivales/parasitología , Trypanosoma/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei brucei/fisiología , Trypanosoma congolense/crecimiento & desarrollo , Trypanosoma congolense/patogenicidad , Trypanosoma congolense/fisiología , Moscas Tse-Tse/parasitología
11.
BMC Microbiol ; 20(1): 58, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32160875

RESUMEN

BACKGROUND: The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is a worldwide pest that feeds on both the leaves and tubers of potato plants. PTM larvae can digest leaves, or tubers, resulting in serious damage to potato plants in the field and potato tubers in storage. To understand how midgut bacterial diversity is influenced by the consumption of these two tissue types, the symbiotic bacteria in the potato-feeding PTM midgut and the endophytic bacteria of potato tissues were analyzed. RESULTS: At the genus level, the bacterial community composition in the PTM midgut was influenced by the tissues consumed, owing to their different nutrient contents. Escherichia_Shigella and Enterobacter were the most dominant genera in the midgut of leaf-feeding and tuber-feeding PTMs, respectively. Interestingly, even though only present in low abundance in leaves and tubers, Escherichia_Shigella were dominantly distributed only in the midgut of leaf-feeding PTMs, indicating that specific accumulation of these genera have occurred by feeding on leaves. Moreover, Enterobacter, the most dominant genus in the midgut of tuber-feeding PTMs, was undetectable in all potato tissues, indicating it is gut-specific origin and tuber feeding-specific accumulation. Both Escherichia_Shigella and Enterobacter abundances were positively correlated with the dominant contents of potato leaves and tubers, respectively. CONCLUSIONS: Enrichment of specific PTM midgut bacterial communities was related to different nutrient levels in different tissues consumed by the insect, which in turn influenced host utilization. We provide evidence that a portion of the intestinal microbes of PTMs may be derived from potato endophytic bacteria and improve the understanding of the relationship between potato endophytic bacteria and the gut microbiota of PTMs, which may offer support for integrated management of this worldwide pest.


Asunto(s)
Bacterias/clasificación , Mariposas Nocturnas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Solanum tuberosum/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Sistema Digestivo/microbiología , Herbivoria , Mariposas Nocturnas/fisiología , Especificidad de Órganos , Filogenia , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/parasitología , Solanum tuberosum/parasitología
12.
Ecotoxicol Environ Saf ; 198: 110616, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32334202

RESUMEN

Honeybees are prone to poisoning after collecting jujube nectar during the jujube flowering period ('honeybee's jujube flower disease'). To explore the mechanism of honeybee poisoning, the gut microbiota of honeybees undergoing the disease were characterised based on amplicon sequencing of the 16 S rRNA gene. Our results showed that the composition and diversity of the gut microbiota were significantly altered in diseased honeybees. We observed a decrease in the relative abundance of Proteobacteria and increased abundances of Firmicutes and Actinobacteria in the midgut and hindgut of diseased honeybees. Moreover, linear discriminant analysis (LDA) effect size revealed significantly selected enrichment of Fructobacillus and Snodgrassella in the midguts from diseased honeybees and Lactobacillus, Bifidobacterium, and Snodgrassella in the hindguts from diseased honeybees. Tax4Fun anylasis indicated that the functional potential of the diseased honeybee gut bacterial community was significantly changed relative to the healthy honeybee. Carbohydrate metabolism, nucleotides metabolism, amino acid synthesis metabolism, coenzyme and vitamins metabolism were increased, while energy metabolism and xenobiotic biodegradation and metabolism were decreased in the diseased honeybees. These results provide a new perspective for evaluating the response of honeybees to jujube flower disease based on changes in the intestinal microflora.


Asunto(s)
Bacterias/efectos de los fármacos , Abejas/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Néctar de las Plantas/toxicidad , Ziziphus/química , Animales , Bacterias/genética , Bifidobacterium/fisiología , Biodiversidad , Sistema Digestivo/microbiología , Microbioma Gastrointestinal/genética , Lactobacillus/fisiología , ARN Ribosómico 16S/genética , Ziziphus/toxicidad
13.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204438

RESUMEN

Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.


Asunto(s)
Bacterias/inmunología , Candida albicans/inmunología , Proteínas Portadoras/inmunología , Sistema Digestivo/inmunología , Cuerpo Adiposo/inmunología , Hemocitos/inmunología , Proteínas de Insectos/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Sistema Digestivo/metabolismo , Sistema Digestivo/microbiología , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/microbiología , Expresión Génica/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Interacciones Huésped-Patógeno/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/inmunología , Larva/metabolismo , Larva/microbiología , FN-kappa B/genética , FN-kappa B/metabolismo , Filogenia , Interferencia de ARN , Homología de Secuencia de Aminoácido
14.
Dokl Biol Sci ; 491(1): 71-74, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32483714

RESUMEN

Assessment of pollution of marine environment and biota with hydrocarbons is of particular importance, since oil products are among the priority pollutants of many seas. Development of new environmental toxicological biomarkers is one of the promising methods of integrated assessment of pollution effects. Here, the first investigation on the abundance of hydrocarbon-oxidizing bacteria in the digestive system of coastal fish (stickleback, dace, white bream, common bleak, perch, gudgeon, and roach) from the eastern Gulf of Finland, Baltic Sea has been performed. The results reflect changes occurring in the environment and indicate contamination of water and sediments with oil and oil products. The relative abundance of hydrocarbon-oxidizing bacteria in the digestive tract of fish is an effective, sensitive, and low-cost indicator of environmental pollution that can be used in monitoring and environmental impact assessment of the aquatic ecosystems.


Asunto(s)
Bacterias/metabolismo , Biomarcadores Ambientales , Peces/microbiología , Hidrocarburos/metabolismo , Contaminación del Agua , Animales , Bacterias/aislamiento & purificación , Cyprinidae/microbiología , Sistema Digestivo/microbiología , Finlandia , Microbioma Gastrointestinal , Sedimentos Geológicos/análisis , Hidrocarburos/análisis , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
15.
BMC Biotechnol ; 19(Suppl 2): 92, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31847844

RESUMEN

BACKGROUND: The Mediterranean fruit fly Ceratitis capitata is a major pest in horticulture. The development of fly larvae is mediated by bacterial decay in the fruit tissue. Despite the importance of bacteria on larval development, very little is known about the interaction between bacteria and larvae in their true ecological context. Understanding their relationship and inter-dependence in the host fruit is important for the development of new pest control interfaces to deal with this pest. RESULTS: We find no negative effects on egg hatch or larval development brought about by the bacterial isolates tested. The various symbionts inhabiting the fly's digestive system differ in their degree of contribution to the development of fly larvae depending on the given host and their sensitivity to induced inhibition caused by female produced antimicrobial peptides. These differences were observed not only at the genus or species level but also between isolates of the same species. We demonstrate how the microbiota from the mother's gut supports the development of larvae in the fruit host and show that larvae play a major role in spreading the bacterial contagion in the infected fruit itself. In addition, we present (for the first time) evidence for horizontal transfer of bacteria between larvae of different maternal origin that develop together in the same fruit. CONCLUSIONS: Larvae play a major role in the spread and shaping of the microbial population in the fruit. The transfer of bacteria between different individuals developing in the same fruit suggests that the infested fruit serves as a microbial hub for the amplification and spread of bacterial strains between individuals.


Asunto(s)
Bacterias/crecimiento & desarrollo , Ceratitis capitata/crecimiento & desarrollo , Prunus persica/parasitología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Ceratitis capitata/metabolismo , Ceratitis capitata/microbiología , Sistema Digestivo/microbiología , Femenino , Larva/crecimiento & desarrollo , Larva/microbiología , Simbiosis
16.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504212

RESUMEN

The larva of the black soldier fly (Hermetia illucens) has emerged as an efficient system for the bioconversion of organic waste. Although many research efforts are devoted to the optimization of rearing conditions to increase the yield of the bioconversion process, microbiological aspects related to this insect are still neglected. Here, we describe the microbiota of the midgut of H. illucens larvae, showing the effect of different diets and midgut regions in shaping microbial load and diversity. The bacterial communities residing in the three parts of the midgut, characterized by remarkable changes in luminal pH values, differed in terms of bacterial numbers and microbiota composition. The microbiota of the anterior part of the midgut showed the highest diversity, which gradually decreased along the midgut, whereas bacterial load had an opposite trend, being maximal in the posterior region. The results also showed that the influence of the microbial content of ingested food was limited to the anterior part of the midgut, and that the feeding activity of H. illucens larvae did not significantly affect the microbiota of the substrate. Moreover, a high protein content compared to other macronutrients in the feeding substrate seemed to favor midgut dysbiosis. The overall data indicate the importance of taking into account the presence of different midgut structural and functional domains, as well as the substrate microbiota, in any further study that aims at clarifying microbiological aspects concerning H. illucens larval midgut.IMPORTANCE The demand for food of animal origin is expected to increase by 2050. Since traditional protein sources for monogastric diets are failing to meet the increasing demand for additional feed production, there is an urgent need to find alternative protein sources. The larvae of Hermetia illucens emerge as efficient converters of low-quality biomass into nutritionally valuable proteins. Many studies have been performed to optimize H. illucens mass rearing on a number of organic substrates and to quantitatively and qualitatively maximize the biomass yield. On the contrary, although the insect microbiota can be fundamental for bioconversion processes and its characterization is mandatory also for safety aspects, this topic is largely overlooked. Here, we provide an in-depth study of the microbiota of H. illucens larval midgut, taking into account pivotal aspects, such as the midgut spatial and functional regionalization, as well as microbiota and nutrient composition of the feeding substrate.


Asunto(s)
Dípteros/microbiología , Microbioma Gastrointestinal , Alimentación Animal/análisis , Animales , Dieta , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/microbiología , Dípteros/crecimiento & desarrollo , Dípteros/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología
17.
BMC Microbiol ; 19(1): 85, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035931

RESUMEN

BACKGROUND: Anopheles mosquitoes are of great importance to human health. A number of studies have shown that midgut and salivary gland microflora have an impact on malaria parasite burden through colonization mechanisms, involving either direct Plasmodium microbiota interaction or bacterial-mediated induction of mosquito immune response. The objective of this study was to isolate and identify the microflora from the midgut and salivary glands of Anopheles species. METHODS: A total of 20 pools (ten per pool) from insectary-reared and 56 pools (five per pool) of field-collected Anopheles mosquitoes were anesthetized by chloroform and dissected. 70% of ethanol was used for surface sterilization of mosquitoes and laboratory equipment, followed by rinsing Anopheles mosquitoes four times with 1X PBS. Each pool of dissected midgut and salivary gland sample was transferred in 1X PBS and squashed, incubated in the water bath and enriched in tryptic soya broth for 24 h at 35 ± 2 °C. As a control, the PBS solutions used to rinse the mosquitoes were also incubated in tryptic soya broth in the same conditions as the sample. After enrichment, a loopful of each sample was taken and inoculated on Blood, Chocolate, MacConkey, and Sabouraud Dextrose agar. Finally, the microbiota was isolated by colony characteristics, biochemical tests, and automated VITEK 2 Compact Analyzer. RESULTS: From all field and laboratory mosquitoes, Pseudomonas was found to be the dominant microbiota identified from all species of Anopheles mosquitoes. Acinetobacter and Klebsiellapneumonia and other families of gram-positive and gram-negative bacteria were identified. CONCLUSIONS: A number of bacteria were isolated and identified. This is the first report on isolation and identification of microbiota from midgut and salivary glands of Anopheles species in Ethiopia. It can be used as a baseline for studying the relationship between microbiota and mosquitoes, and for the development of a new malaria biological control.


Asunto(s)
Anopheles/microbiología , Sistema Digestivo/microbiología , Microbioma Gastrointestinal , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Glándulas Salivales/microbiología , Animales , Etiopía , Femenino , Bacterias Gramnegativas/clasificación , Bacterias Grampositivas/clasificación , Malaria , Mosquitos Vectores/microbiología , ARN Ribosómico 16S
18.
J Invertebr Pathol ; 163: 86-93, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30905857

RESUMEN

Paramyxean parasites in the genus Marteilia deteriorate digestive tissues of the host organisms, resulting in mortality of oysters, cockles, and mussels. Most reports of infection by Marteilia spp. are from Europe, while a new species of Marteilia was identified recently in Japan. Here, we report a previously unidentified species in the genus Marteilia from digestive diverticula of Manila clam Ruditapes philippinarum from the south coast of Korea. Prevalence of the parasite was low, 0.5-3.3% in the study sites. We characterized this species using light and transmission electron microscopy (TEM), and analyzed the 18S rDNA sequence. Light microscopy revealed the sporulation process from uninucleated stage to spore in the epithelial tissues of the digestive gland. TEM revealed that the parasites produced four secondary cells containing four tri-cellular spores. An electron-dense haplosporosome-like structure and striated inclusions were evident in the spore and the primary cells, respectively, while refringent granules were rarely observed in the secondary cells. Phylogenetic analyses of the 18S rDNA sequence placed this isolate in the genus Marteilia, although it is not identical to other known species in the genus. Based on morphological and molecular characters, we describe this species as Marteilia tapetis sp. nov., the second Marteilia species reported parasitizing Manila clams in Asian waters.


Asunto(s)
Bivalvos/parasitología , Cercozoos , Animales , Cercozoos/clasificación , Cercozoos/genética , Cercozoos/aislamiento & purificación , Cercozoos/ultraestructura , ADN Protozoario , Sistema Digestivo/microbiología , Filogenia , Infecciones por Protozoos/diagnóstico , Infecciones por Protozoos/parasitología , ARN Ribosómico 18S/genética
19.
Ecotoxicol Environ Saf ; 181: 381-387, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31212186

RESUMEN

The effects of Bt Cry9Ee toxin on honey bee, Apis mellifera L., survival, developmental rate, larval weight, pollen consumption, and midgut bacterial diversity were tested in the laboratory. Honey bee larvae and adults were reared in vitro and fed a diet that contained Cry9Ee toxin at 0.01, 0.1, 1, and 10 mg/L. Cry9Ee toxin 0.01, 0.1, and 1 mg/L in diet used in this study may represent a value closer to field relevance and the highest concentration is unlikely to be encountered in the field and thus represent a worst case scenario. The dependent variables were compared for groups of honey bees feeding on treated diet and those feeding on negative control (no addition of a test substance), solvent control (0.01 mM Na2CO3), and positive control diet (dimethoate 45 mg/L). Bt Cry9Ee toxin did not affect survival or larval weight, and the result was great confidence in accepting the null hypothesis by power analysis. The effect on development rates and pollen consumption were the inconclusive results because the post-hoc power was less than 0.8. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial class such as γ-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacilli, ß-Proteobacteria, and Bacteroidia were detected, and no significant changes were found in the species diversity and richness between Cry9Ee treatments and laboratory control.


Asunto(s)
Proteínas Bacterianas/toxicidad , Abejas/efectos de los fármacos , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad , Animales , Toxinas de Bacillus thuringiensis , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Abejas/crecimiento & desarrollo , Sistema Digestivo/microbiología , Larva/efectos de los fármacos , Polen
20.
Mol Ecol ; 27(8): 1980-1991, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28748615

RESUMEN

Necrophagous beetles utilize carrion, a highly nutritious resource that is susceptible to intense microbial competition, by treating it with antimicrobial anal and oral secretions. However, how this regulates the carcass microbiota remains unclear. Here, we show that carcasses prepared by the burying beetle Nicrophorus vespilloides undergo significant changes in their microbial communities subsequent to their burial and "preparation." Prepared carcasses hosted a microbial community that was more similar to that of beetles' anal and oral secretions than to the native carcass community or the surrounding soil, indicating that the beetles regulated the carcass microbiota. A core microbial community (Xanthomonadaceae, Enterococcaceae, Enterobacteriaceae and Yarrowia yeasts) was transmitted by the beetles to the larvae via the anal and oral secretions and the carcass surface. These core taxa proliferated on the carcass, indicating a growth conducive environment for these microbes when associated with beetles. However, total bacterial loads were higher on decomposing carcasses without beetles than on beetle-prepared carcasses, indicating that the beetles and/or their associated symbionts suppress the growth of competing microbes. Thus, apart from being a nutritional resource, the carcass provides a medium for vertical transmission of a tightly regulated symbiotic microbiota, whose activity on the carcass and in the larval gut may involve carcass preservation as well as digestion.


Asunto(s)
Escarabajos/microbiología , Microbiota/genética , Simbiosis/genética , Animales , Escarabajos/genética , Sistema Digestivo/microbiología , Enterococcaceae/clasificación , Enterococcaceae/genética , Larva/genética , Larva/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA