Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Annu Rev Cell Dev Biol ; 35: 615-635, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590587

RESUMEN

Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.


Asunto(s)
Sistema Nervioso Central/irrigación sanguínea , Neuroglía/citología , Neuronas/citología , Acoplamiento Neurovascular/fisiología , Sistema Nervioso Periférico/irrigación sanguínea , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Diferenciación Celular , Movimiento Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Homeostasis/fisiología , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Neuroglía/fisiología , Neuronas/fisiología , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo
2.
Annu Rev Neurosci ; 42: 107-127, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283900

RESUMEN

Maturation of neuronal circuits requires selective elimination of synaptic connections. Although neuron-intrinsic mechanisms are important in this process, it is increasingly recognized that glial cells also play a critical role. Without proper functioning of these cells, the number, morphology, and function of synaptic contacts are profoundly altered, resulting in abnormal connectivity and behavioral abnormalities. In addition to their role in synaptic refinement, glial cells have also been implicated in pathological synapse loss and dysfunction following injury or nervous system degeneration in adults. Although mechanisms regulating glia-mediated synaptic elimination are still being uncovered, it is clear this complex process involves many cues that promote and inhibit the removal of specific synaptic connections. Gaining a greater understanding of these signals and the contribution of different cell types will not only provide insight into this critical biological event but also be instrumental in advancing knowledge of brain development and neural disease.


Asunto(s)
Sistema Nervioso Central/embriología , Degeneración Nerviosa/fisiopatología , Enfermedades del Sistema Nervioso/fisiopatología , Neuroglía/fisiología , Neuronas/fisiología , Sistema Nervioso Periférico/embriología , Sinapsis/fisiología , Animales , Astrocitos/fisiología , Evolución Biológica , Sistema Nervioso Central/crecimiento & desarrollo , Señales (Psicología) , Exosomas/fisiología , Humanos , Invertebrados/embriología , Microglía/fisiología , Morfogénesis , Vaina de Mielina/fisiología , Unión Neuromuscular/embriología , Sistema Nervioso Periférico/crecimiento & desarrollo , Sinapsis/patología
3.
Development ; 146(2)2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30567930

RESUMEN

Basement membranes (BMs) are specialized layers of extracellular matrix (ECM) mainly composed of Laminin, type IV Collagen, Perlecan and Nidogen/entactin (NDG). Recent in vivo studies challenged the initially proposed role of NDG as a major ECM linker molecule by revealing dispensability for viability and BM formation. Here, we report the characterization of the single Ndg gene in Drosophila. Embryonic Ndg expression was primarily observed in mesodermal tissues and the chordotonal organs, whereas NDG protein localized to all BMs. Although loss of Laminin strongly affected BM localization of NDG, Ndg-null mutants exhibited no overt changes in the distribution of BM components. Although Drosophila Ndg mutants were viable, loss of NDG led to ultrastructural BM defects that compromised barrier function and stability in vivo Moreover, loss of NDG impaired larval crawling behavior and reduced responses to vibrational stimuli. Further morphological analysis revealed accompanying defects in the larval peripheral nervous system, especially in the chordotonal organs and the neuromuscular junction (NMJ). Taken together, our analysis suggests that NDG is not essential for BM assembly but mediates BM stability and ECM-dependent neural plasticity during Drosophila development.


Asunto(s)
Membrana Basal/metabolismo , Tipificación del Cuerpo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Animales , Membrana Basal/ultraestructura , Conducta Animal , Fenómenos Biomecánicos , Proteínas de Unión al Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Proteínas de la Matriz Extracelular/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Laminina/metabolismo , Larva/genética , Unión Neuromuscular/patología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/patología , Permeabilidad , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vibración
4.
Dev Dyn ; 250(12): 1796-1809, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34091971

RESUMEN

BACKGROUND: Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS: hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS: Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cíclidos/embriología , Desarrollo Embrionario/genética , Aletas de Animales/embriología , Aletas de Animales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Cíclidos/genética , Cíclidos/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Intestinos/embriología , Intestinos/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Miocardio/metabolismo , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Homología de Secuencia , Cráneo/embriología , Cráneo/metabolismo , Diente/embriología , Diente/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Development ; 145(2)2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343638

RESUMEN

During the development of the central nervous system (CNS), only motor axons project into peripheral nerves. Little is known about the cellular and molecular mechanisms that control the development of a boundary at the CNS surface and prevent CNS neuron emigration from the neural tube. It has previously been shown that a subset of spinal cord commissural axons abnormally invades sensory nerves in Ntn1 hypomorphic embryos and Dcc knockouts. However, whether netrin 1 also plays a similar role in the brain is unknown. In the hindbrain, precerebellar neurons migrate tangentially under the pial surface, and their ventral migration is guided by netrin 1. Here, we show that pontine neurons and inferior olivary neurons, two types of precerebellar neurons, are not confined to the CNS in Ntn1 and Dcc mutant mice, but that they invade the trigeminal, auditory and vagus nerves. Using a Ntn1 conditional knockout, we show that netrin 1, which is released at the pial surface by ventricular zone progenitors is responsible for the CNS confinement of precerebellar neurons. We propose, that netrin 1 distribution sculpts the CNS boundary by keeping CNS neurons in netrin 1-rich domains.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Netrina-1/metabolismo , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Sistema Nervioso Central/citología , Receptor DCC/deficiencia , Receptor DCC/genética , Receptor DCC/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Netrina-1/deficiencia , Netrina-1/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Sistema Nervioso Periférico/citología , Embarazo
6.
Proc Natl Acad Sci U S A ; 114(31): E6352-E6360, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716930

RESUMEN

The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.


Asunto(s)
Caenorhabditis elegans/embriología , Ciona intestinalis/embriología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/embriología , Placa Neural/embriología , Células-Madre Neurales/metabolismo , Xenopus laevis/embriología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Factor de Transcripción MSX1/metabolismo , Factores de Transcripción Paired Box/metabolismo , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/embriología , Análisis de la Célula Individual
7.
Dev Biol ; 444 Suppl 1: S110-S143, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29802835

RESUMEN

The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.


Asunto(s)
Desarrollo Embrionario/fisiología , Cresta Neural/embriología , Cresta Neural/fisiopatología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Ectodermo , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Melanocitos/citología , Cresta Neural/citología , Sistema Nervioso Periférico/embriología , Vertebrados/embriología
8.
Cell Mol Life Sci ; 75(13): 2407-2429, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29387904

RESUMEN

The retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner. Using gene expression assays combined with immunohistochemistry, we show that this is because RA signaling specifically acts on a small population of soxb1c-expressing ESN progenitors, which form a neurogenic niche in the trunk ectoderm, to modulate ESN production during elongation of the larval body. Our findings reveal an important role for RA signaling in regulating neurogenic niche activity in the larval amphioxus PNS. Although only few studies have addressed this issue so far, comparable RA signaling functions have been reported for neurogenic niches in the CNS and in certain neurogenic placode derivatives of vertebrates. Accordingly, the here-described mechanism is likely a conserved feature of chordate embryonic and adult neural development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Anfioxos/genética , Neurogénesis/efectos de los fármacos , Sistema Nervioso Periférico/efectos de los fármacos , Tretinoina/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Ectodermo/citología , Ectodermo/efectos de los fármacos , Ectodermo/embriología , Hibridación in Situ , Anfioxos/embriología , Larva/efectos de los fármacos , Larva/genética , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Nicho de Células Madre , Tretinoina/metabolismo
9.
Dev Biol ; 413(1): 70-85, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26988118

RESUMEN

During amniote embryogenesis the nervous and vascular systems interact in a process that significantly affects the respective morphogenesis of each network by forming a "neurovascular" link. The importance of neurovascular cross-talk in the central nervous system has recently come into focus with the growing awareness that these two systems interact extensively both during development, in the stem-cell niche, and in neurodegenerative conditions such as Alzheimer's Disease and Amyotrophic Lateral Sclerosis. With respect to the peripheral nervous system, however, there have been no live, real-time investigations of the potential relationship between these two developing systems. To address this deficit, we used multispectral 4D time-lapse imaging in a transgenic quail model in which endothelial cells (ECs) express a yellow fluorescent marker, while neural crest cells (NCCs) express an electroporated red fluorescent marker. We monitored EC and NCC migration in real-time during formation of the peripheral nervous system. Our time-lapse recordings indicate that NCCs and ECs are physically juxtaposed and dynamically interact at multiple locations along their trajectories. These interactions are stereotypical and occur at precise anatomical locations along the NCC migratory pathway. NCCs migrate alongside the posterior surface of developing intersomitic vessels, but fail to cross these continuous streams of motile ECs. NCCs change their morphology and migration trajectory when they encounter gaps in the developing vasculature. Within the nascent dorsal root ganglion, proximity to ECs causes filopodial retraction which curtails forward persistence of NCC motility. Overall, our time-lapse recordings support the conclusion that primary vascular networks substantially influence the distribution and migratory behavior of NCCs and the patterned formation of dorsal root and sympathetic ganglia.


Asunto(s)
Células Endoteliales/citología , Ganglios Espinales/embriología , Microscopía/métodos , Cresta Neural/embriología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Simpático/embriología , Imagen de Lapso de Tiempo/métodos , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/metabolismo , Tipificación del Cuerpo , Comunicación Celular , Movimiento Celular , Coturnix , Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Proteínas Luminiscentes/metabolismo , Cresta Neural/citología , Células Madre/citología
10.
Dev Biol ; 413(1): 86-103, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26187199

RESUMEN

During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Tubo Neural/embriología , Factores de Transcripción Paired Box/genética , Sistema Nervioso Periférico/embriología , Proteínas Represoras/genética , Alelos , Animales , Axones/metabolismo , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Linaje de la Célula , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas del Ojo/fisiología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/fisiología , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/fisiología , Fenotipo , Estructura Terciaria de Proteína , Proteínas Represoras/fisiología , Rombencéfalo/metabolismo , Células Madre/citología , Factores de Transcripción/genética
11.
Dev Biol ; 398(2): 135-46, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446276

RESUMEN

During vertebrate development, the central (CNS) and peripheral nervous systems (PNS) arise from the neural plate. Cells at the margin of the neural plate give rise to neural crest cells, which migrate extensively throughout the embryo, contributing to the majority of neurons and all of the glia of the PNS. The rest of the neural plate invaginates to form the neural tube, which expands to form the brain and spinal cord. The emergence of molecular cloning techniques and identification of fluorophores like Green Fluorescent Protein (GFP), together with transgenic and electroporation technologies, have made it possible to easily visualize the cellular and molecular events in play during nervous system formation. These lineage-tracing techniques have precisely demonstrated the migratory pathways followed by neural crest cells and increased knowledge about their differentiation into PNS derivatives. Similarly, in the spinal cord, lineage-tracing techniques have led to a greater understanding of the regional organization of multiple classes of neural progenitor and post-mitotic neurons along the different axes of the spinal cord and how these distinct classes of neurons assemble into the specific neural circuits required to realize their various functions. Here, we review how both classical and modern lineage and marker analyses have expanded our knowledge of early peripheral nervous system and spinal cord development.


Asunto(s)
Linaje de la Célula , Sistema Nervioso Periférico/citología , Médula Espinal/citología , Animales , Axones/metabolismo , Movimiento Celular , Humanos , Sistema Nervioso Periférico/embriología , Médula Espinal/anatomía & histología , Médula Espinal/embriología , Torso/embriología
12.
Dev Biol ; 397(2): 162-74, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446278

RESUMEN

The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis.


Asunto(s)
Linaje de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Paired Box/metabolismo , Sistema Nervioso Periférico/embriología , Órganos de los Sentidos/embriología , Animales , Cruzamientos Genéticos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Confocal , Células-Madre Neurales/citología , Neuronas/citología , Órganos de los Sentidos/citología , Transgenes/genética
13.
Development ; 140(17): 3657-68, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23903191

RESUMEN

One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo.


Asunto(s)
Drosophila/embriología , Neuroglía/fisiología , Sistema Nervioso Periférico/embriología , Animales , Diferenciación Celular/fisiología , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/inmunología , Proteínas de Homeodominio/inmunología , Inmunohistoquímica , Microscopía Confocal , Neuroglía/citología , Sistema Nervioso Periférico/crecimiento & desarrollo
14.
Cancer Cell ; 13(2): 129-40, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18242513

RESUMEN

Neurofibromatosis is caused by the loss of neurofibromin (Nf1), leading to peripheral nervous system (PNS) tumors, including neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). A long-standing question has been whether these tumors arise from neural crest stem cells (NCSCs) or differentiated glia. Germline or conditional Nf1 deficiency caused a transient increase in NCSC frequency and self-renewal in most regions of the fetal PNS. However, Nf1-deficient NCSCs did not persist postnatally in regions of the PNS that developed tumors and could not form tumors upon transplantation into adult nerves. Adult P0a-Cre+Nf1(fl/-) mice developed neurofibromas, and Nf1(+/-)Ink4a/Arf(-/-) and Nf1/p53(+/-) mice developed MPNSTs, but NCSCs did not persist postnatally in affected locations in these mice. Tumors appeared to arise from differentiated glia, not NCSCs.


Asunto(s)
Neoplasias/patología , Cresta Neural/citología , Neurofibromina 1/deficiencia , Células Madre/citología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Mutación/genética , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Neoplasias de la Vaina del Nervio/patología , Cresta Neural/efectos de los fármacos , Neurofibroma Plexiforme/patología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/patología , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo
15.
Development ; 139(11): 2020-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22535413

RESUMEN

The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.


Asunto(s)
Evolución Biológica , Cordados no Vertebrados/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neurogénesis/fisiología , Sistema Nervioso Periférico/embriología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Region del Complejo Génico Achaete-Scute/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Clonación Molecular , Cartilla de ADN/genética , Epidermis/embriología , Florida , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Nervioso Periférico/metabolismo , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo
16.
Exp Cell Res ; 321(1): 17-24, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24140263

RESUMEN

The peripheral nervous system (PNS) is complex and omnipresent. The PNS targets all parts of the body starting from early stages of embryonic development, and in large part, is derived from multipotent migratory neural crest stem cells. Current opinion mostly perceives the PNS as a means of communication and information exchange between the central nervous system, the rest of the body and the environment. Additionally, the PNS is largely associated with autonomic control. Being an "alternative brain" it provides local regulation of processes in organs. However, it has become evident in recent years that in addition to these main canonical functions the PNS possesses a number of other important roles in development and homeostasis of targeted tissues, for instance, in nerve-dependent regeneration. The PNS represents a niche that hosts neural crest-derived peripheral glial cells, or, in other words, neural crest-like multipotent cells throughout the entire body. These multipotent nerve-adjacent cells can be reprogrammed in vivo and play a number of roles from creating pigmentation to controlling regeneration of a limb in amphibians or skin in rodents. In the current review we outline newly emerged, non-canonical functions of the PNS and briefly describe cellular and molecular aspects of these alternative functions.


Asunto(s)
Diferenciación Celular , Células Madre Multipotentes/metabolismo , Regeneración Nerviosa/fisiología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Animales , Humanos , Células Madre Multipotentes/citología
17.
Ann Pathol ; 35(1): 54-70, 2015 Jan.
Artículo en Francés | MEDLINE | ID: mdl-25541115

RESUMEN

Peripheral nerve sheath tumors are common neoplasms in daily practice. Diagnosis and classification of most conventional peripheral nerve sheath tumors are relatively straightforward for the experienced observer; but on occasion, they are diagnostically challenging (especially with locally aggressive and malignant tumors). This article aims to provide an update of the data (clinical, histological, immunohistochemistry and genomic) of benign, intermediate and malignant peripheral nerve sheath tumors, thanks to the latest WHO "Classification of Tumors of Soft Tissue and Bone", published in 2013, which includes a new chapter on "Nerve Sheath Tumors". Advances in molecular biology have provided new insights into the nature of the various peripheral nerve sheath tumors, and have begun to suggest novel targeted therapeutic approaches.


Asunto(s)
Neoplasias de la Vaina del Nervio/patología , Biomarcadores de Tumor , Tumor de Células Granulares/química , Tumor de Células Granulares/diagnóstico , Tumor de Células Granulares/patología , Hamartoma/diagnóstico , Hamartoma/patología , Humanos , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/genética , Neoplasias de la Vaina del Nervio/química , Neoplasias de la Vaina del Nervio/clasificación , Neoplasias de la Vaina del Nervio/diagnóstico , Neoplasias de la Vaina del Nervio/epidemiología , Neoplasias de la Vaina del Nervio/genética , Sistema Nervioso Periférico/embriología , Pronóstico , Organización Mundial de la Salud
18.
Dev Biol ; 373(1): 107-17, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23078916

RESUMEN

Preplacodal ectoderm (PPE) and neural crest (NC) are specified at the interface of neural and nonneural ectoderm and together contribute to the peripheral nervous system in all vertebrates. Bmp activates early steps for both fates during late blastula stage. Low Bmp activates expression of transcription factors Tfap2a and Tfap2c in the lateral neural plate, thereby specifying neural crest fate. Elevated Bmp establishes preplacodal competence throughout the ventral ectoderm by coinducing Tfap2a, Tfap2c, Foxi1 and Gata3. PPE specification occurs later at the end of gastrulation and requires complete attenuation of Bmp, yet expression of PPE competence factors continues well past gastrulation. Here we show that competence factors positively regulate each other's expression during gastrulation, forming a self-sustaining network that operates independently of Bmp. Misexpression of Tfap2a in embryos blocked for Bmp from late blastula stage can restore development of both PPE and NC. However, Tfap2a alone is not sufficient to activate any other competence factors nor does it rescue individual placodes. On the other hand, misexpression of any two competence factors in Bmp-blocked embryos can activate the entire transcription factor network and support the development of NC, PPE and some individual placodes. We also show that while these factors are partially redundant with respect to PPE specification, they later provide non-redundant functions needed for development of specific placodes. Thus, we have identified a gene regulatory network that coordinates development of NC, PPE and individual placodes in zebrafish.


Asunto(s)
Diferenciación Celular/fisiología , Ectodermo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Cresta Neural/embriología , Sistema Nervioso Periférico/embriología , Pez Cebra/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , ADN Complementario/biosíntesis , Hibridación in Situ , Morfolinos/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Pez Cebra/genética
19.
Dev Biol ; 378(2): 183-93, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23545329

RESUMEN

The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.


Asunto(s)
Ciona intestinalis/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Sistema Nervioso Periférico/metabolismo , Animales , Animales Modificados Genéticamente , Ciona intestinalis/embriología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Epidermis/embriología , Epidermis/inervación , Inmunohistoquímica , Hibridación in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , MicroARNs/genética , Microscopía Fluorescente , Modelos Genéticos , Sistema Nervioso Periférico/embriología , Receptores Notch/genética , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/genética
20.
Proc Natl Acad Sci U S A ; 108(23): 9673-8, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606367

RESUMEN

Extrinsic factors and the interactions of neurons with surrounding tissues are essential for almost every aspect of neuronal development. Here we describe a strategy of gene expression with an independent enhancer-driven cellular marker (GEEM) for studying roles of cell-cell interactions and extrinsic factors in the development of the Drosophila nervous system. Key to this strategy is robust expression of enhancer-driven transgenic markers in specific neurons. To this end, we have created vectors to achieve bright and even labeling of neuronal processes, easy cloning of enhancer elements, and efficient and flexible generation of transgenic animals. We provide examples of enhancer-driven membrane markers for specific neurons in both the peripheral and central nervous systems and their applications in the study of neuronal projections and connections in the Drosophila brain. We further applied GEEM to examine the wrapping of sensory neuron somas by glia during embryonic and larval stages, and neuron-glia interaction during dendrite pruning in live animals, leading to the discovery that glia play critical roles in the severing and degradation of proximal dendrites. The GEEM paradigm should be applicable to the studies of both cell-autonomous and nonautonomous regulations of any cell type.


Asunto(s)
Drosophila/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Neuroglía/fisiología , Neuronas/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Comunicación Celular/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Dendritas/metabolismo , Dendritas/fisiología , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Larva/metabolismo , Larva/fisiología , Masculino , Microscopía Confocal , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neurofisiología/métodos , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA