Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701556

RESUMEN

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Asunto(s)
Adenosina , Metiltransferasas , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Humanos , Femenino , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Metilación , Línea Celular Tumoral , Proliferación Celular/genética , Animales , Sistema de Transporte de Aminoácidos A/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Pronóstico , Supervivencia Celular/genética
2.
Cell Commun Signal ; 21(1): 326, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957724

RESUMEN

BACKGROUND: The placentas from newborns that are small for gestational age (SGA; birth weight < -2 SD for gestational age) may display multiple pathological characteristics. A key determinant of fetal growth and, therefore, birth weight is placental amino acid transport, which is under the control of the serine/threonine kinase mechanistic target of rapamycin (mTOR). The effects of endoplasmic reticulum (ER) stress on the mTOR pathway and the levels of amino acid transporters are not well established. METHODS: Placentas from SGA and appropriate for gestational age (AGA) newborns and the human placental BeWo cell line exposed to the ER stressor tunicamycin were used. RESULTS: We detected a significant increase in the levels of C/EBP homologous protein (CHOP) in the placentas from SGA newborns compared with those from AGA newborns, while the levels of other ER stress markers were barely affected. In addition, placental mTOR Complex 1 (mTORC1) activity and the levels of the mature form of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) were also reduced in the SGA group. Interestingly, CHOP has been reported to upregulate growth arrest and DNA damage-inducible protein 34 (GADD34), which in turn suppresses mTORC1 activity. The GADD34 inhibitor guanabenz attenuated the increase in CHOP protein levels and the reduction in mTORC1 activity caused by the ER stressor tunicamycin in the human placental cell line BeWo, but it did not recover mature SNAT2 protein levels, which might be reduced as a result of defective glycosylation. CONCLUSIONS: Collectively, these data reveal that GADD34A activity and glycosylation are key factors controlling mTORC1 signaling and mature SNAT2 levels in trophoblasts, respectively, and might contribute to the SGA condition. Video Abstract.


Asunto(s)
Sistema de Transporte de Aminoácidos A , Placenta , Serina-Treonina Quinasas TOR , Factor de Transcripción CHOP , Femenino , Humanos , Recién Nacido , Embarazo , Peso al Nacer , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Edad Gestacional , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Placenta/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tunicamicina/farmacología , Regulación hacia Arriba , Factor de Transcripción CHOP/genética , Sistema de Transporte de Aminoácidos A/genética
3.
BMC Gastroenterol ; 23(1): 74, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918802

RESUMEN

BACKGROUND: Solute carrier family 38 member 2 (SLC38A2) has previously been reported to participate in carcinogenesis. However, its expression and function in gastric cancer (GC) remain unclear. The present study aimed to investigate the role of SLC38A2 in GC. METHODS: The prognostic value and expression of SLC38A2 in GC was analyzed by combining bioinformatics and experimental analyses. Colony formation, Cell Counting Kit-8, wound healing, Transwell and tumor formation assays were performed to assess the biological function of SLC38A2. The cBioPortal, GeneMANIA and LinkedOmics databases were mined to determine the underlying regulatory mechanisms of SLC38A2. The role of SLC38A2 in tumor immune infiltration was explored using the TIMER database. RESULTS: Our results demonstrated that SLC38A2 was upregulated and was correlated with a poor prognosis in GC patients. SLC38A2 downregulation significantly inhibited the proliferation, invasion and migration of GC cells. Abnormal genetic alteration and epigenetic regulation may contribute to the upregulation of SLC38A2 expression levels in GC. The results of enrichment analysis demonstrated that SLC38A2 was associated with 'hippo signaling' and 'ubiquitinyl hydrolase activity'. The results also indicated that SLC38A2 may be a key factor in GC immune infiltration and M2 macrophage polarization. CONCLUSION: Overall, these data identified that SLC38A2 may serve as a potential prognostic biomarker and therapeutic target in GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Epigénesis Genética , Movimiento Celular/genética , Proliferación Celular/genética , Pronóstico , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo
4.
Anticancer Drugs ; 33(9): 826-839, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066402

RESUMEN

Lung cancer is devastating cancer that ranks as the leading cause of cancer-related death. Long noncoding RNA (lncRNA) opioid growth factor receptor pseudogene 1 (OGFRP1) was recognized as an oncogene in many cancers. However, the molecular mechanism of OGFRP1 in lung cancer is still poorly understood. The expression of target RNAs and genes was detected by quantitative real-time PCR and western blot. The interaction between miR-299-3p and OGFRP1 or solute carrier family 38 member 1 (SLC38A1) was predicted by StarbaseV3.0 and verified by dual-luciferase reporter assay and Pearson's correlation coefficient. Besides, a transplantation model of human lung cancer in nude mice was established to evaluate the role of OGFRP1 in lung cancer. OGFRP1 and SLC38A1 were overexpressed, whereas miR-299-3p was lowly expressed in lung cancer tumors and cells. OGFRP1 knockdown suppressed cell proliferation and facilitated ferroptosis by promoting lipid peroxidation and iron accumulation in lung cancer. Besides, Furthermore, miR-299-3p inhibitor or SLC38A1 overexpression attenuated OGFRP1 depletion-induced suppression on cell proliferation and ferroptosis in lung cancer. Animal experiments indicated that OGFRP1 deficiency restrained tumor growth in vivo by regulating the miR-299-3p/SLC38A1 axis. OGFRP1 regulated cell proliferation and ferroptosis in lung cancer by inhibiting miR-299-3p to enhance SLC38A1 expression, providing a novel therapeutic strategy for lung cancer.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Hierro/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613847

RESUMEN

Intrauterine growth restriction (IUGR), predominantly caused by placental insufficiency, affects partitioning of nutrients to the fetus. The system A sodium-coupled transporters (SNAT or SLC38), of types A1, A2, and A4, control non-essential amino acid uptake and supply. Here, we aimed to investigate the expression of these transporters across different placental disease cohorts and cells. To determine disease impact, transporter expressions at the gene (qPCR) and protein (western blots) level were assessed in gestationally matched placental tissues. Early (<34 weeks), and late (34−36 weeks) onset IUGR cases with/out preeclampsia were compared to preterm controls. We also investigated level of transporter expression in primary trophoblasts under glucose deprivation (n = 6) and hypoxia conditions (n = 7). SLC38A4 protein was significantly downregulated in early preterm pregnancies complicated with IUGR with/out preeclampsia. There were no differences in late preterm IUGR cohorts. Furthermore, we demonstrate for the first time in primary trophoblast cells, that gene expression of the transporters was sensitive to and induced by glucose starvation. SLC38A4 mRNA expression was also significantly upregulated in response to hypoxia. Thus, SLC38A4 expression was persistently low in early preterm IUGR pregnancies, regardless of disease aetiology. This suggests that gestational age at delivery, and consequently IUGR severity, may influence loss of its expression.


Asunto(s)
Placenta , Preeclampsia , Recién Nacido , Embarazo , Femenino , Humanos , Placenta/metabolismo , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Trofoblastos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo
6.
Am J Physiol Endocrinol Metab ; 320(1): E102-E112, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33225719

RESUMEN

Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region. Additionally, immunoprecipitation assays revealed that ChREBP and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) interact with each other, as part of the complex that repress SNAT2 expression. The interaction between these proteins was confirmed by an in vivo chromatin immunoprecipitation assay. These findings suggest that glucogenic amino acid uptake by the liver is controlled by ChREBP through the repression of SNAT2 expression in rats consuming a high-carbohydrate diet.NEW & NOTEWORTHY This study highlights the key role of carbohydrate responsive element-binding protein (ChREBP) in the fine-tuned regulation between glucose and amino acid metabolism in the liver via regulation of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) expression after the consumption of a high-carbohydrate diet. ChREBP binds to a carbohydrate response element (ChoRE) site in the SNAT2 promoter region and recruits silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor to reduce SNAT2 transcription. This study revealed that ChREBP prevents the uptake of glucogenic amino acids upon the consumption of a high-carbohydrate diet.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carbohidratos de la Dieta/farmacología , Co-Represor 2 de Receptor Nuclear/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucemia/análisis , Glucemia/metabolismo , Inmunoprecipitación de Cromatina , Dieta , Regulación hacia Abajo , Hepatocitos/metabolismo , Masculino , Co-Represor 2 de Receptor Nuclear/genética , Cultivo Primario de Células , Ratas , Ratas Wistar , Sacarosa/farmacología , Transcripción Genética/efectos de los fármacos
7.
Br J Cancer ; 125(6): 865-876, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274945

RESUMEN

BACKGROUND: Many molecular alterations are shared by embryonic liver development and hepatocellular carcinoma (HCC). Identifying the common molecular events would provide a novel prognostic biomarker and therapeutic target for HCC. METHODS: Expression levels and clinical relevancies of SLC38A4 and HMGCS2 were investigated by qRT-PCR, western blot, TCGA and GEO datasets. The biological roles of SLC38A4 were investigated by functional assays. The downstream signalling pathway of SLC38A4 was investigated by qRT-PCR, western blot, immunofluorescence, luciferase reporter assay, TCGA and GEO datasets. RESULTS: SLC38A4 silencing was identified as an oncofetal molecular event. DNA hypermethylation contributed to the downregulations of Slc38a4/SLC38A4 in the foetal liver and HCC. Low expression of SLC38A4 was associated with poor prognosis of HCC patients. Functional assays demonstrated that SLC38A4 depletion promoted HCC cellular proliferation, stemness and migration, and inhibited HCC cellular apoptosis in vitro, and further repressed HCC tumorigenesis in vivo. HMGCS2 was identified as a critical downstream target of SLC38A4. SLC38A4 increased HMGCS2 expression via upregulating AXIN1 and repressing Wnt/ß-catenin/MYC axis. Functional rescue assays showed that HMGCS2 overexpression reversed the oncogenic roles of SLC38A4 depletion in HCC. CONCLUSIONS: SLC38A4 downregulation was identified as a novel oncofetal event, and SLC38A4 was identified as a novel tumour suppressor in HCC.


Asunto(s)
Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Carcinoma Hepatocelular/patología , Regulación hacia Abajo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Neoplasias Hepáticas/patología , Hígado/embriología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Trasplante de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Vía de Señalización Wnt
8.
Eur J Clin Invest ; 51(7): e13540, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33769559

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have emerged as vital regulators in human cancers, including colorectal cancer (CRC). In this study, we aimed to explore the roles of circRUNX1 in CRC. METHODS: The levels of circRUNX1, RUNX1 mRNA, solute carrier family 38 member 1 (SLC38A1) mRNA and microRNA-485-5p (miR-485-5p) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The protein level of SLC38A1 was measured by Western blot assay. Cell colony formation, migration, invasion and apoptosis were assessed by colony formation assay, wound-healing assay, Transwell assay and flow cytometry analysis, respectively. The interaction between miR-485-5p and circRUNX1 or SLC38A1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The levels of extracellular glutamine, intracellular glutamate and α-ketoglutarate (α-KG) were measured with specific kits. The functional role of circRUNX1 in CRC development in vivo was explored by murine xenograft model assay. RESULTS: CircRUNX1 was upregulated in CRC tissues and cells compared with normal tissues and cells. CircRUNX1 deficiency restrained CRC cell colony formation, migration, invasion and glutaminolysis and induced apoptosis in vitro as well as blocked tumour growth in vivo. CircRUNX1 directly sponged miR-485-5p, which negatively modulated SLC38A1 expression in CRC cells. The effects of circRUNX1 knockdown on CRC cell colony formation, migration, invasion, apoptosis and glutaminolysis were reversed by miR-485-5p inhibition. Moreover, miR-485-5p overexpression repressed the malignant behaviours of CRC cells, with SLC38A1 elevation overturned the impacts. CONCLUSION: CircRUNX1 promoted CRC cell growth, metastasis and glutamine metabolism and repressed apoptosis by elevating SLC38A1 through sponging miR-485-5p, which might provide a novel target for CRC treatment.


Asunto(s)
Adenocarcinoma/genética , Sistema de Transporte de Aminoácidos A/genética , Neoplasias Colorrectales/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , MicroARNs/genética , ARN Circular/genética , Animales , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Persona de Mediana Edad , Trasplante de Neoplasias , Oncogenes/genética
9.
Clin Sci (Lond) ; 135(17): 2049-2066, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34406367

RESUMEN

Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.


Asunto(s)
Sistema de Transporte de Aminoácidos A/deficiencia , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Placenta/metabolismo , Placentación , Sistema de Transporte de Aminoácidos A/genética , Animales , Estudios de Casos y Controles , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Placenta/fisiopatología , Embarazo , Estudios Prospectivos , Interferencia de ARN
10.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164327

RESUMEN

In cultured human fibroblasts, SNAT transporters (System A) account for the accumulation of non-essential neutral amino acids, are adaptively up-regulated upon amino acid deprivation and play a major role in cell volume recovery upon hypertonic stress. No information is instead available on the expression and activity of SNAT transporters in human bone marrow mesenchymal stromal cells (MSC), although they are increasingly investigated for their staminal and immunomodulatory properties and used for several therapeutic applications. The uptake of glutamine and proline, two substrates of SNAT1 and SNAT2 transporters, was measured in primary human MSC and an MSC line. The amino acid analogue MeAIB, a specific substrate of these carriers, has been used to selectively inhibit SNAT-dependent transport of glutamine and, through its sodium-dependent transport, as an indicator of SNAT1/2 activity. SNAT1/2 expression and localization were assessed with RT-PCR and confocal microscopy, respectively. Cell volume was assessed from urea distribution space. In all these experiments, primary human fibroblasts were used as the positive control for SNAT expression and activity. Compared with fibroblasts, MSC have a lower SNAT1 expression and hardly detectable membrane localization of both SNAT1 and SNAT2. Moreover, they exhibit no sodium-dependent MeAIB uptake or MeAIB-inhibitable glutamine transport, and exhibit a lower ability to accumulate glutamine and proline than fibroblasts. MSC exhibited an only marginal increase in MeAIB transport upon amino acid starvation and did not recover cell volume after hypertonic stress. In conclusion, the activity of SNAT transporters is low in human MSC. MSC adaptation to amino acid shortage is expected to rely on intracellular synthesis, given the absence of an effective up-regulation of the SNAT transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Aminoácidos Neutros/metabolismo , Células Madre Mesenquimatosas/citología , Sistema de Transporte de Aminoácidos A/genética , Técnicas de Cultivo de Célula/métodos , Membrana Celular/metabolismo , Células Cultivadas , Medios de Cultivo/química , Fibroblastos/citología , Fibroblastos/metabolismo , Glutamina/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Prolina/metabolismo , Transporte de Proteínas , beta-Alanina/análogos & derivados , beta-Alanina/metabolismo
11.
J Physiol ; 597(7): 1905-1918, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30734290

RESUMEN

KEY POINTS: Fetal growth is dependent on effective placental nutrient transportation, which is regulated by mammalian target of rapamycin (mTOR) complex 1 modulation of nutrient transporter expression. These transporters are dysregulated in pregnancies affected by uteroplacental insufficiency and maternal obesity. Nutrient transporters and mTOR were altered in placentae of mothers born growth restricted compared to normal birth weight dams, with maternal diet- and fetal sex-specific responses. Exercise initiated during pregnancy downregulated mTOR protein expression, despite an increase in mTOR activation in male associated placentae, and reduced nutrient transporter gene abundance, which was also dependent on maternal diet and fetal sex. Limited changes were characterized with exercise initiated before and continued throughout pregnancy in nutrient transporter and mTOR expression. Maternal exercise during pregnancy differentially regulated mTOR and nutrient transporters in a diet- and sex-specific manner, which likely aimed to improve late gestational placental growth and neonatal survival. ABSTRACT: Adequate transplacental nutrient delivery is essential for fetoplacental development. Intrauterine growth restriction and maternal obesity independently alter placental nutrient transporter expression. Although exercise is beneficial for maternal health, limited studies have characterized how the timing of exercise initiation influences placental nutrient transport. Therefore, this study investigated the impact of maternal exercise on placental mechanistic target of rapamycin (mTOR) and nutrient transporter expression in growth restricted mothers and whether these outcomes were dependent on maternal diet or fetal sex. Uteroplacental insufficiency or sham surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning and at 16 weeks were randomly allocated to an exercise protocol: sedentary, exercised prior to and during pregnancy, or exercised during pregnancy only. Females were mated with normal males (20 weeks) and F2 placentae collected at E20. Exercise during pregnancy only, reduced mTOR protein expression in all groups and increased mTOR activation in male associated placentae. Exercise during pregnancy only, decreased the expression of amino acid transporters in a diet- and sex-specific manner. Maternal growth restriction altered mTOR and system A amino acid transporter expression in a sex- and diet-specific manner. These data highlight that maternal exercise initiated during pregnancy alters placental mTOR expression, which may directly regulate amino acid transporter expression, to a greater extent than exercise initiated prior to and continued during pregnancy, in a diet- and fetal sex-dependent manner. These findings highlight that the timing of exercise initiation is important for optimal placental function.


Asunto(s)
Proteínas Portadoras/metabolismo , Retardo del Crecimiento Fetal , Actividad Motora/fisiología , Placenta/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Masculino , Embarazo , Ratas , Ratas Wistar , Factores Sexuales
12.
J Cell Physiol ; 234(11): 20322-20328, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344987

RESUMEN

The glutamine amino acid transporter solute carrier family 38 member 1 (SLC38A1) is associated with the occurrence and progression of solid tumors. However, it has not yet been assessed in patients with hematologic malignancy. Herein, we investigated SLC38A1 expression and explored its clinical implications in acute myeloid leukemia (AML). The results showed that patients with high SLC38A1 expression had a lower mutation rate of NPM1 gene and higher incidence of adverse-risk karyotype (p = 0.0010 and 0.0051, respectively). Patients with a high level of SLC38A1 expression presented significantly shorter overall survival in whole-cohort, chemotherapy-only, and non-inv(16) AML (p = 0.0049, 0.0247, and 0.0005 respectively). Moreover, both univariate and multivariate analyses showed that high SLC38A1 expression was an independent unfavorable prognostic biomarker for AML (p = 0.0057 and 0.0483, respectively). In summary, our study revealed SLC38A1 as a valuable prognostic and predictive marker for AML. Further, glutamine transporter SLC38A1 might serve as a potential target for the development of novel therapeutic drugs in the treatment of AML.


Asunto(s)
Sistema de Transporte de Aminoácidos A/genética , Regulación Leucémica de la Expresión Génica/genética , Leucemia Mieloide Aguda/genética , Mutación/genética , Adolescente , Adulto , Anciano , Biomarcadores de Tumor/genética , Niño , Supervivencia sin Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Masculino , Persona de Mediana Edad , Proteínas Nucleares/genética , Nucleofosmina , Pronóstico , Inducción de Remisión , Adulto Joven
13.
Am J Physiol Heart Circ Physiol ; 316(4): H911-H919, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794434

RESUMEN

We have previously shown that Na+-coupled neutral amino acid transporter 1 (SNAT1) modulates nitric oxide (NO) production in pulmonary arterial endothelial cells (PAECs) from newborn piglets. Specifically, the ability to increase NO production in response to the l-arginine-NO precursor l-citrulline is dependent on SNAT1 expression. Elucidating factors that regulate SNAT1 expression in PAECs could provide new insights and therapeutic targets relevant to NO production. Our major goals were to determine if reactive oxygen species (ROS) modulate SNAT1 expression in PAECs from newborn piglets and to evaluate the role of NADPH oxidase 1 (NOX1) and uncoupled endothelial NO synthase, enzymatic sources of ROS, in hypoxia-induced increases in SNAT1 expression. Treatment with either H2O2 or xanthine plus xanthine oxidase increased SNAT1 expression in PAECs from newborn piglets cultured under normoxic conditions. Hypoxia-induced increases in SNAT1 expression were inhibited by treatments with the ROS-removing agents catalase and superoxide dismutase, NOX1 siRNA, and the NO synthase inhibitor NG-nitro-l-arginine methyl ester. Both tetrahydropbiopterin (BH4) and l-citrulline, two therapies that decrease ROS by recoupling endothelial NO synthase, reduced the hypoxia-induced increase in SNAT1 expression. BH4 and l-citrulline treatment improved NO production in hypoxic PAECs despite a reduction in SNAT1 expression. In conclusion, SNAT1 expression is modulated by ROS in PAECs from newborn piglets. However, ROS-mediated decreases in SNAT1 expression per se do not implicate a reduction in NO production. Although SNAT1 may be critical to l-citrulline-induced increases in NO production, therapies designed to alter SNAT1 expression may not lead to a concordant change in NO production. NEW & NOTEWORTHY Na+-coupled neutral amino acid transporter 1 (SNAT1) modulates nitric oxide (NO) production in piglet pulmonary arterial endothelial cells. Factors that regulate SNAT1 expression in pulmonary arterial endothelial cells are unclear. Here, we show that ROS-reducing strategies inhibit hypoxia-induced increases in SNAT1 expression. l-Citrulline and tetrahydropbiopterin decrease SNAT1 expression but increase NO production. Although SNAT1 is modulated by ROS, changes in SNAT1 expression may not cause a concordant change in NO production.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Animales , Hipoxia de la Célula , Células Cultivadas , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxígeno/metabolismo , Arteria Pulmonar/citología , Porcinos , Xantina Oxidasa/metabolismo
14.
Genome Res ; 26(2): 192-202, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26576615

RESUMEN

The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2(-/-) embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development.


Asunto(s)
Metilación de ADN , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/fisiología , Sistema de Transporte de Aminoácidos A/genética , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/fisiología , Análisis de Secuencia de ADN
15.
Bull Exp Biol Med ; 167(1): 116-119, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31177453

RESUMEN

We propose an original method for controlling BP by administration of Si~ODN nanocomposites containing antisense oligonucleotides fixed on silicon-organic nanoparticles. ODN in nanocomposites are targeted to mRNA of the genes encoding angiotensin-converting enzyme (ACE1) and type 1 angiotensin-II receptor (AT1A). The experiments were performed on hypertensive ISIAH rats, a genetic model of hypertension. Single inhalation or intraperitoneal administration of the nanocomposites targeted to ACE1 mRNA or ATA1 mRNA, respectively, led to a pronounced decrease (by ~30 mm Hg) in systolic BP in ISIAH rats over a week. The use of scrambled ODN in the nanocomposites had no effect. A decrease in the expression of ACE1 and AT1A genes under the effect of the corresponding antisense ODN was demonstrated, which attested to directed effect of the test preparations.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/uso terapéutico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/uso terapéutico , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Presión Sanguínea/genética , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Peptidil-Dipeptidasa A/genética , ARN Mensajero/metabolismo , Ratas , Silicio
16.
Pharmacology ; 101(1-2): 64-71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29065407

RESUMEN

The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.


Asunto(s)
Adipocitos Marrones/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hipoxia/genética , Obesidad/genética , Animales , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , ARN Interferente Pequeño/genética
17.
Biochem Genet ; 56(6): 639-649, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29785670

RESUMEN

Imprinted genes are characterized by monoallelic expression that is dependent on parental origin. Comparative analysis of imprinted genes between species is a powerful tool for understanding the biological significance of genomic imprinting. The slc38a4 gene encodes a neutral amino acid transporter and is identified as imprinted in mice. In this study, the imprinting status of SLC38A4 was assessed in bovine adult tissues and placenta using a polymorphism-based approach. Results indicate that SLC38A4 is not imprinted in eight adult bovine tissues including heart, liver, spleen, lung, kidney, muscle, fat, and brain. It was interesting to note that SLC38A4 showed polymorphic status in five heterogeneous placentas, with three exhibiting paternal monoallelic expression and two exhibiting biallelic expression. Monoallelic expression of imprinted genes is generally associated with allele-specific differentially methylation regions (DMRs) of CpG islands (CGIs)-encompassed promoter; therefore, the DNA methylation statuses of three CGIs in the SLC38A4 promoter and exon 1 region were tested in three placentas (two exhibiting paternal monoallelic and one showing biallelic expression of SLC38A4) and their corresponding paternal sperms. Unexpectedly, extreme hypomethylation (< 3%) of the DNA was observed in all the three detected placentas and their corresponding paternal sperms. The absence of DMR in bovine SLC38A4 promoter region implied that DNA methylation of these three CGIs does not directly or indirectly affect the polymorphic imprinting of SLC38A4 in bovine placenta. This suggested other epigenetic features other than DNA methylation are needed in regulating the imprinting of bovine SLC38A4, which is different from that of mouse with respect to a DMR existence at the mouse's slc38a4 promoter region. Although further work is needed, this first characterization of polymorphic imprinting status of SLC38A4 in cattle placenta provides valuable information on investigating the genomic imprinting phenomenon itself.


Asunto(s)
Sistema de Transporte de Aminoácidos A , Metilación de ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Impresión Genómica/fisiología , Placenta/metabolismo , Polimorfismo Genético , Sistema de Transporte de Aminoácidos A/biosíntesis , Sistema de Transporte de Aminoácidos A/genética , Animales , Bovinos , Femenino , Ratones , Embarazo
18.
Biochim Biophys Acta ; 1848(5): 1157-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701231

RESUMEN

The sodium coupled neutral amino acid transporter 2 (SNAT2/SAT2/ATA2) is expressed in the mammary gland (MG) and plays an important role in the uptake of alanine and glutamine which are the most abundant amino acids transported into this tissue during lactation. Thus, the aim of this study was to assess the amount and localization of SNAT2 before delivery and during lactation in rat MG, and to evaluate whether prolactin and the dietary protein/carbohydrate ratio might influence SNAT2 expression in the MG, liver and adipose tissue during lactation. Our results showed that SNAT2 protein abundance in the MG increased during lactation and this increase was maintained along this period, while 24 h after weaning it tended to decrease. To study the effect of prolactin on SNAT2 expression, we incubated MG explants or T47D cells transfected with the SNAT2 promoter with prolactin, and we observed in both studies an increase in the SNAT2 expression or promoter activity. Consumption of a high-protein/low carbohydrate diet increased prolactin concentration, with a concomitant increase in SNAT2 expression not only in the MG during lactation, but also in the liver and adipose tissue. There was a correlation between SNAT2 expression and serum prolactin levels depending on the amount of dietary protein/carbohydrate ratio consumed. These findings suggest that prolactin actively supports lactation providing amino acids to the gland through SNAT2 for the synthesis of milk proteins.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Lactancia/metabolismo , Glándulas Mamarias Animales/metabolismo , Prolactina/metabolismo , Tejido Adiposo/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Femenino , Regulación de la Expresión Génica , Lactancia/sangre , Lactancia/genética , Hígado/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Proteínas de la Leche/biosíntesis , Estado Nutricional , Embarazo , Prolactina/sangre , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas Wistar , Técnicas de Cultivo de Tejidos , Transfección , Destete
19.
Hum Mol Genet ; 23(4): 992-1001, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24105465

RESUMEN

Animals cloned by somatic cell nuclear transfer (SCNT) provide a unique model for understanding the mechanisms of nuclear epigenetic reprogramming to a state of totipotency. Though many phenotypic abnormalities have been demonstrated in cloned animals, the underlying mechanisms are not well understood. In this study, we performed transcriptome-wide allelic expression analyses in brain and placental tissues of cloned mice. We found that Gab1, Sfmbt2 and Slc38a4 showed loss of imprinting in all cloned mice analyzed, which might be involved in placentomegaly of cloned mice. These three genes did not require de novo DNA methylation in growing oocytes for the establishment of imprinting, implying the involvement of a de novo DNA methylation-independent mechanism. Loss of Dlk1-Dio3 imprinting was also observed in nearly half of cloned mouse embryos and showed a strong correlation with embryonic lethality. Our findings are essential to understand the underlying mechanisms of developmental abnormalities of cloned animals. We also emphasize that particular attention should be paid to specific imprinted genes for therapeutic and agricultural applications of SCNT.


Asunto(s)
Clonación de Organismos , Impresión Genómica , Proteínas Adaptadoras Transductoras de Señales , Sistema de Transporte de Aminoácidos A/genética , Animales , Secuencia de Bases , Encéfalo/metabolismo , Femenino , Yoduro Peroxidasa/genética , Ratones , Fosfoproteínas/genética , Placenta/metabolismo , Embarazo , Proteínas Represoras , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Transcriptoma
20.
Eur Respir J ; 48(4): 1184-1191, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27587543

RESUMEN

We evaluated the associations between potentially functional variants in a comprehensive list of cancer-related genes and lung cancer in a Korean population.A total of 1969 potentially functional single nucleotide polymorphisms (SNPs) of 1151 genes involved in carcinogenesis were evaluated using an Affymetrix custom-made GeneChip in 610 nonsmall cell lung cancer patients and 610 healthy controls. A replication study was conducted in an independent set of 490 cases and 486 controls. 68 SNPs were significantly associated with lung cancer in the discovery set and tested for replication.Among the 68 SNPs, three SNPs (corepressor interacting with RBPJ 1 (CIR1) rs13009079T>C, ribonucleotide reductase M1 (RRM1) rs1465952T>C and solute carrier family 38, member 4 (SLC38A4) rs2429467C>T) consistantly showed significant associations with lung cancer in the replication study. In combined analysis, adjusted odds ratio for CIR1 rs13009079T>C, RRM1 rs1465952T>C and SLC38A4 rs2429467C>T were 0.69, 0.71 and 0.73, respectively (p=4×10-5, 0.01 and 0.001, respectively) under the dominant model. The relative mRNA expression level of CIR1 was significantly associated with rs13009079T>C genotypes in normal lung tissues (ptrend=0.03).These results suggest that the three SNPs, particularly CIR1 rs13009079T>C, may play a role in the pathogenesis of lung cancer.


Asunto(s)
Neoplasias Pulmonares/genética , Polimorfismo de Nucleótido Simple , Anciano , Sistema de Transporte de Aminoácidos A/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Represoras/genética , República de Corea , Ribonucleósido Difosfato Reductasa , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA