Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.430
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Rev ; 76(1): 142-193, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37940347

RESUMEN

The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Aminoácidos Neutros , COVID-19 , Humanos , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Riñón/metabolismo , Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , COVID-19/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
J Biol Chem ; 300(9): 107687, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159813

RESUMEN

The pharmacology of amino acid transporters in the SLC6 family is poorly developed compared to that of the neurotransmitter transporters. To identify new inhibitors of the proline transporter SIT1 (SLC6A20), its expression in Xenopus laevis oocytes was optimized. Trafficking of SIT1 was augmented by co-expression of angiotensin-converting enzyme 2 (ACE2) in oocytes but there was no strict requirement for co-expression of ACE2. A pharmacophore-guided screen identified tiagabine as a potent non-competitive inhibitor of SIT1. To understand its binding mode, we determined the cryo-electron microscopy (cryo-EM) structure of ACE2-SIT1 bound with tiagabine. The inhibitor binds close to the orthosteric proline binding site, but due to its size extends into the cytosolic vestibule. This causes the transporter to adopt an inward-open conformation, in which the intracellular gate is blocked. This study provides the first structural insight into inhibition of SIT1 and generates tools for a better understanding of the ACE2-SIT1 complex. These findings may have significance for SARS-CoV-2 binding to its receptor ACE2 in human lung alveolar cells where SIT1 and ACE2 are functionally expressed.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Microscopía por Crioelectrón , Tiagabina , Xenopus laevis , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Animales , Humanos , Tiagabina/química , Tiagabina/metabolismo , Oocitos/metabolismo , Sitios de Unión , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacología
3.
PLoS Pathog ; 19(2): e1011126, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735752

RESUMEN

Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.


Asunto(s)
Enterovirus , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Ratones , Sistemas de Transporte de Aminoácidos Neutros , Ácido Aspártico/metabolismo , Virus de la Fiebre Aftosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral/fisiología
4.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561222

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Pinocitosis , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisosomas/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35140185

RESUMEN

A high extracellular adenosine triphosphate (ATP) concentration rapidly and reversibly exposes phosphatidylserine (PtdSer) in T cells by binding to the P2X7 receptor, which ultimately leads to necrosis. Using mouse T cell transformants expressing P2X7, we herein performed CRISPR/Cas9 screening for the molecules responsible for P2X7-mediated PtdSer exposure. In addition to Eros, which is required for the localization of P2X7 to the plasma membrane, this screening identified Xk and Vps13a as essential components for this process. Xk is present at the plasma membrane, and its paralogue, Xkr8, functions as a phospholipid scramblase. Vps13a is a lipid transporter in the cytoplasm. Blue-native polyacrylamide gel electrophoresis indicated that Xk and Vps13a interacted at the membrane. A null mutation in Xk or Vps13a blocked P2X7-mediated PtdSer exposure, the internalization of phosphatidylcholine, and cytolysis. Xk and Vps13a formed a complex in mouse splenic T cells, and Xk was crucial for ATP-induced PtdSer exposure and cytolysis in CD25+CD4+ T cells. XK and VPS13A are responsible for McLeod syndrome and chorea-acanthocytosis, both characterized by a progressive movement disorder and cognitive and behavior changes. Our results suggest that the phospholipid scrambling activity mediated by XK and VPS13A is essential for maintaining homeostasis in the immune and nerve systems.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fosfolípidos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Linfocitos T/fisiología , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfato , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Sistemas CRISPR-Cas , Muerte Celular , Línea Celular , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Mutación , Fosfatidilserinas/farmacología , Receptores Purinérgicos P2X7/genética , Proteínas de Transporte Vesicular/genética
6.
Am J Physiol Renal Physiol ; 326(6): F981-F987, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545650

RESUMEN

Cystinosis is an autosomal recessive lysosomal storage disorder, caused by mutations in the CTNS gene, resulting in an absent or altered cystinosin (CTNS) protein. Cystinosin exports cystine out of the lysosome, with a malfunction resulting in cystine accumulation and a defect in other cystinosin-mediated pathways. Cystinosis is a systemic disease, but the kidneys are the first and most severely affected organs. In the kidney, the disease initially manifests as a generalized dysfunction in the proximal tubules (also called renal Fanconi syndrome). MFSD12 is a lysosomal cysteine importer that directly affects the cystine levels in melanoma cells, HEK293T cells, and cystinosis patient-derived fibroblasts. In this study, we aimed to evaluate MFSD12 mRNA levels in cystinosis patient-derived proximal tubular epithelial cells (ciPTECs) and to study the effect of MFSD12 knockout on cystine levels. We showed similar MFSD12 mRNA expression in patient-derived ciPTECs in comparison with the control cells. CRISPR MFSD12 knockout in a patient-derived ciPTEC (CTNSΔ57kb) resulted in significantly reduced cystine levels. Furthermore, we evaluated proximal tubular reabsorption after injection of mfsd12a translation-blocking morpholino (TB MO) in a ctns-/- zebrafish model. This resulted in decreased cystine levels but caused a concentration-dependent increase in embryo dysmorphism. Furthermore, the mfsd12a TB MO injection did not improve proximal tubular reabsorption or megalin expression. In conclusion, MFSD12 mRNA depletion reduced cystine levels in both tested models without improvement of the proximal tubular function in the ctns-/- zebrafish embryo. In addition, the apparent toxicity of higher mfsd12a TB MO concentrations on the zebrafish development warrants further evaluation.NEW & NOTEWORTHY In this study, we show that MFSD12 depletion with either CRISPR/Cas9-mediated gene editing or a translation-blocking morpholino significantly reduced cystine levels in cystinosis ciPTECs and ctns-/- zebrafish embryos, respectively. However, we observed no improvement in the proximal tubular reabsorption of dextran in the ctns-/- zebrafish embryos injected with mfsd12a translation-blocking morpholino. Furthermore, a negative effect of the mfsd12a morpholino on the zebrafish development warrants further investigation.


Asunto(s)
Cistina , Cistinosis , Modelos Animales de Enfermedad , Túbulos Renales Proximales , Pez Cebra , Animales , Pez Cebra/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Cistinosis/metabolismo , Cistinosis/genética , Cistinosis/patología , Humanos , Cistina/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Epiteliales/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas CRISPR-Cas
7.
Lab Invest ; 104(1): 100287, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949358

RESUMEN

Cystinosis is an autosomal recessive disease caused by mutations in the CTNS gene encoding a protein called cystinosine, which is a lysosomal cystine transporter. Disease-causing mutations lead to accumulation of cystine crystals in the lysosomes, thereby causing dysfunction of vital organs. Determination of the increased leukocyte cystine level is one of the most used methods for diagnosis. However, this method is expensive, difficult to perform, and may yield different results in different laboratories. In this study, a disease model was created with CTNS gene-silenced HK2 cells, which can mimic cystinosis in cell culture, and multiomics methods (ie, proteomics, metabolomics, and fluxomics) were implemented at this cell culture to investigate new biomarkers for the diagnosis. CTNS-silenced cell line exhibited distinct metabolic profiles compared with the control cell line. Pathway analysis highlighted significant alterations in various metabolic pathways, including alanine, aspartate, and glutamate metabolism; glutathione metabolism; aminoacyl-tRNA biosynthesis; arginine and proline metabolism; beta-alanine metabolism; ascorbate and aldarate metabolism; and histidine metabolism upon CTNS silencing. Fluxomics analysis revealed increased cycle rates of Krebs cycle intermediates such as fumarate, malate, and citrate, accompanied by enhanced activation of inorganic phosphate and ATP production. Furthermore, proteomic analysis unveiled differential expression levels of key proteins involved in crucial cellular processes. Notably, peptidyl-prolyl cis-trans isomerase A, translation elongation factor 1-beta (EF-1beta), and 60S acidic ribosomal protein decreased in CTNS-silenced cells. Additionally, levels of P0 and tubulin α-1A chain were reduced, whereas levels of 40S ribosomal protein S8 and Midasin increased. Overall, our study, through the utilization of an in vitro cystinosis model and comprehensive multiomics approach, led to the way toward the identification of potential new biomarkers while offering valuable insights into the pathogenesis of cystinosis.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistinosis/genética , Cistinosis/metabolismo , Cistina/genética , Cistina/metabolismo , Proteómica , Biomarcadores , Silenciador del Gen , ARN Interferente Pequeño/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
8.
Hum Mol Genet ; 31(13): 2262-2278, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35137071

RESUMEN

Recessive mutations in the CTNS gene encoding the lysosomal transporter cystinosin cause cystinosis, a lysosomal storage disease leading to kidney failure and multisystem manifestations. A Ctns knockout mouse model recapitulates features of cystinosis, but the delayed onset of kidney manifestations, phenotype variability and strain effects limit its use for mechanistic and drug development studies. To provide a better model for cystinosis, we generated a Ctns knockout rat model using CRISPR/Cas9 technology. The Ctns-/- rats display progressive cystine accumulation and crystal formation in multiple tissues including kidney, liver and thyroid. They show an early onset and progressive loss of urinary solutes, indicating generalized proximal tubule dysfunction, with development of typical swan-neck lesions, tubulointerstitial fibrosis and kidney failure, and decreased survival. The Ctns-/- rats also present crystals in the cornea, and bone and liver defects, as observed in patients. Mechanistically, the loss of cystinosin induces a phenotype switch associating abnormal proliferation and dedifferentiation, loss of apical receptors and transporters, and defective lysosomal activity and autophagy in the cells. Primary cultures of proximal tubule cells derived from the Ctns-/- rat kidneys confirmed the key changes caused by cystine overload, including reduced endocytic uptake, increased proliferation and defective lysosomal dynamics and autophagy. The novel Ctns-/- rat model and derived proximal tubule cell system provide invaluable tools to investigate the pathogenesis of cystinosis and to accelerate drug discovery.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Síndrome de Fanconi , Insuficiencia Renal , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Autofagia/genética , Cistina , Cistinosis/genética , Cistinosis/patología , Lisosomas/metabolismo , Ratones , Ratas
9.
Development ; 148(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33757992

RESUMEN

The thyroid hormone T3 and its nuclear receptor TRα1 control gut development and homeostasis through the modulation of intestinal crypt cell proliferation. Despite increasing data, in-depth analysis on their specific action on intestinal stem cells is lacking. By using ex vivo 3D organoid cultures and molecular approaches, we observed early responses to T3 involving the T3-metabolizing enzyme Dio1 and the transporter Mct10, accompanied by a complex response of stem cell- and progenitor-enriched genes. Interestingly, specific TRα1 loss-of-function (inducible or constitutive) was responsible for low ex vivo organoid development and impaired stem cell activity. T3 treatment of animals in vivo not only confirmed the positive action of this hormone on crypt cell proliferation but also demonstrated its key action in modulating the number of stem cells, the expression of their specific markers and the commitment of progenitors into lineage-specific differentiation. In conclusion, T3 treatment or TRα1 modulation has a rapid and strong effect on intestinal stem cells, broadening our perspectives in the study of T3/TRα1-dependent signaling in these cells.


Asunto(s)
Proliferación Celular , Intestinos , Transducción de Señal , Células Madre/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Triyodotironina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Femenino , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Células Madre/citología , Receptores alfa de Hormona Tiroidea/genética , Triyodotironina/genética
10.
Clin Genet ; 105(3): 323-328, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38009794

RESUMEN

Cystinosis is a severe, monogenic systemic disease caused by variants in CTNS gene. Currently, there is growing evidence that exonic variants in many diseases can affect pre-mRNA splicing. The impact of CTNS gene exonic variants on splicing regulation may be underestimated due to the lack of routine studies at the RNA level. Here, we analyzed 59 exonic variants in the CTNS gene using bioinformatics tools and identified candidate variants that may induce splicing alterations by minigene assays. We identified six exonic variants that induce splicing alterations by disrupting the ratio of exonic splicing enhancers/exonic splicing silencers (ESEs/ESSs) or by interfering with the recognition of classical splice sites, or both. Our results help in the correct molecular characterization of variants in cystinosis and inform emerging therapies. Furthermore, our work suggests that the combination of in silico and in vitro assays facilitates to assess the effects of DNA variants driving rare genetic diseases on splicing regulation and will enhance the clinical utility of variant functional annotation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistinosis/genética , Empalme del ARN/genética , Exones/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN , Empalme Alternativo , Sitios de Empalme de ARN , Sistemas de Transporte de Aminoácidos Neutros/genética
11.
Blood ; 139(20): 3058-3072, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35015834

RESUMEN

Large granular lymphocyte (LGL) leukemia comprises a group of rare lymphoproliferative disorders whose molecular landscape is incompletely defined. We leveraged paired whole-exome and transcriptome sequencing in the largest LGL leukemia cohort to date, which included 105 patients (93 T-cell receptor αß [TCRαß] T-LGL and 12 TCRγδ T-LGL). Seventy-six mutations were observed in 3 or more patients in the cohort, and out of those, STAT3, KMT2D, PIK3R1, TTN, EYS, and SULF1 mutations were shared between both subtypes. We identified ARHGAP25, ABCC9, PCDHA11, SULF1, SLC6A15, DDX59, DNMT3A, FAS, KDM6A, KMT2D, PIK3R1, STAT3, STAT5B, TET2, and TNFAIP3 as recurrently mutated putative drivers using an unbiased driver analysis approach leveraging our whole-exome cohort. Hotspot mutations in STAT3, PIK3R1, and FAS were detected, whereas truncating mutations in epigenetic modifying enzymes such as KMT2D and TET2 were observed. Moreover, STAT3 mutations co-occurred with mutations in chromatin and epigenetic modifying genes, especially KMT2D and SETD1B (P < .01 and P < .05, respectively). STAT3 was mutated in 50.5% of the patients. Most common Y640F STAT3 mutation was associated with lower absolute neutrophil count values, and N647I mutation was associated with lower hemoglobin values. Somatic activating mutations (Q160P, D170Y, L287F) in the STAT3 coiled-coil domain were characterized. STAT3-mutant patients exhibited increased mutational burden and enrichment of a mutational signature associated with increased spontaneous deamination of 5-methylcytosine. Finally, gene expression analysis revealed enrichment of interferon-γ signaling and decreased phosphatidylinositol 3-kinase-Akt signaling for STAT3-mutant patients. These findings highlight the clinical and molecular heterogeneity of this rare disorder.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Leucemia Linfocítica Granular Grande , Sistemas de Transporte de Aminoácidos Neutros/genética , Exoma , Proteínas del Ojo/genética , Genómica , Humanos , Leucemia Linfocítica Granular Grande/genética , Mutación , Proteínas del Tejido Nervioso/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
12.
Neurochem Res ; 49(1): 170-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684384

RESUMEN

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as L-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Antipsicóticos , Ketamina , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Receptores de N-Metil-D-Aspartato
13.
Pediatr Nephrol ; 39(8): 2283-2292, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38127152

RESUMEN

Cystinosis is a rare autosomal recessive disease with an incidence 1 per 100,000-200,000 live births. It is caused by pathogenic variants of the cystinosin (CTNS) gene that lead to impaired cystine transport from lysosomes to cystosol, resulting in cystine accumulation in lysosomes and subsequent cellular dysfunction. The initial manifestation, cystine accumulation in proximal tubular cells (PTCs), causes renal Fanconi syndrome, which presents with proximal renal tubular acidosis and generalized dysfunction of the proximal tubule, including the presence of polyuria, glycosuria, phosphaturia, aminoaciduria, tubular proteinuria, growth retardation, and rickets. Eventually, glomerular involvement, glomerular proteinuria, focal segmental glomerulosclerosis (FSGS), and progression to kidney failure occur. Although the kidneys are the first organs affected, and play a key role in morbidity and mortality, extrarenal multiorgan involvement can occur in patients with cystinosis, which is seen not only in adults but in early ages in untreated patients, patients with insufficient treatment, and in those that don't comply with treatment. The treatment of cystinosis consists of supportive treatment for Fanconi syndrome, and specific lifelong cystine-depleting therapy using oral cysteamine. There is strong evidence that as early as possible, initiation and ongoing appropriate therapy with cysteamine are essential for delaying the progression to kidney failure, end-organ damage, and extrarenal involvement. The present review aimed to evaluate the extra renal complications of cystinosis.


Asunto(s)
Cistinosis , Síndrome de Fanconi , Humanos , Cistinosis/complicaciones , Cistinosis/genética , Síndrome de Fanconi/etiología , Síndrome de Fanconi/complicaciones , Cisteamina/uso terapéutico , Depletores de Cistina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/genética
14.
BMC Ophthalmol ; 24(1): 48, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291379

RESUMEN

BACKGROUND: The polymer-based facile and effective drug carrier approach was developed to treat superficial fungal infected retinopathy infections. METHODS: Here, biotin-glutathione (B-GHS) functionalized with chitosan grafted proline (CS-g-P) moieties were fabricated with the loading of fluconazole (FLZ) for the treatment of retinopathy. FT-IR and XRD techniques were used to characterize chemical structural and phase changes of the prepared carriers The SEM results show that the sphere morphology with interconnection particle nature. RESULTS: The particle diameter was found as ~ 6.5 and ~ 8.6 nm for CS-g-P/B-GHS and FLZ-loaded CS-g-P/B-GHS carriers, respectively. The negative surface charge was found as the values of CS-g-P/B-GHS and FLZ-loaded CS-g-P/B-GHS, such as -20.7 mV and - 32.2 mV, from zeta potential analysis. The in-vitro FLZ releases from the CS-g-P/B-GHS were investigated at pH 7.4 (PBS) as the tear fluid environment, and it was observed at 85.02% of FLZ release in 8 h reaction time. The sustained release was observed, leading to the necessity for prolonged therapeutic effects. The antifungal effect of the carrier was studied by the minimum inhibitory concentration (MIC) and the percentage inhibition of viable fungal count against Candida albicans, and it observed 81.02% of the zone of inhibition by the FLZ carrier. CONCLUSION: FLZ-loaded CS-g-P/B-GHS carrier could inhibit the biofilm formation in a concentration-dependent inhibition. Hence, A novel FLZ/B-GHS-CS-g-P carrier is a hopeful approach for effectively treating superficial fungal contaminations of the retina region.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Antifúngicos , Quitosano , Fluconazol , Retinitis , Humanos , Antifúngicos/farmacología , Biotina , Fluconazol/administración & dosificación , Enfermedades de la Retina , Retinitis/tratamiento farmacológico , Espectroscopía Infrarroja por Transformada de Fourier , Micosis/tratamiento farmacológico
15.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34848541

RESUMEN

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Especificidad por Sustrato/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/fisiología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , Transporte Biológico/fisiología , Microscopía por Crioelectrón/métodos , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Células HeLa , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
16.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396788

RESUMEN

Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.


Asunto(s)
Macrófagos , Simportadores , Hormonas Tiroideas , Animales , Ratones , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Triyodotironina/farmacología , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
17.
Am J Physiol Cell Physiol ; 325(2): C550-C562, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458433

RESUMEN

SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/ß-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias , Embarazo , Femenino , Humanos , Glutamina , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina , Microambiente Tumoral , Sistemas de Transporte de Aminoácidos , Aminoácidos , Serina , Neoplasias/genética
18.
Respir Res ; 24(1): 33, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707853

RESUMEN

Pulmonary inflammation involves complex changes of the immune cells, in which macrophages play important roles and their function might be influenced by metabolism. Slc38a6 acts as a carrier of nutrient for macrophages (Mφ) to exert the function. In this study, pneumonia patient blood was found up-regulated SLC38A6 expression, which correlated with monocytes number and white blood cell number. The similar result was also shown in LPS induced sepsis mice. To reveal the key role of Slc38a6, we used systemic and conditional knock-out mice. Either systemic or LyzCRE specific knock-out could alleviate the severity of sepsis mice, reduce the proinflammatory cytokine TNF-α and IL-1ß expression in serum and decrease the monocytes number in bronchial alveolar lavage and peritoneal lavage via flow cytometry. In order to reveal the signal of up-regulated Slc38a6, the Tlr4 signal inhibitor TAK242 and TLR4 knock-out mice were used. By blocking Tlr4 signal in macrophages via TAK242, the expression of Slc38a6 was down-regulated synchronously, and the same results were also found in Tlr4 knock-out macrophages. However, in the overexpressed Slc38a6 macrophages, blocking Tlr4 signal via TAK242, 20% of the mRNA expression of IL-1ß still could be expressed, indicating that up-regulated Slc38a6 participates in IL-1ß expression process. Collectively, it is the first time showed that an amino acid transporter SLC38A6 up-regulated in monocytes/macrophages promotes activation in pulmonary inflammation. SLC38A6 might be a promising target molecule for pulmonary inflammation treatment.


Asunto(s)
Neumonía , Receptor Toll-Like 4 , Animales , Ratones , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Ratones Noqueados , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/metabolismo , Transducción de Señal/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
19.
Hum Genomics ; 16(1): 29, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906672

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein. The pathogenic mechanism resulting in SCA1 is still unclear. Protein-protein interactions affect the function and stability of ataxin-1. METHODS: Wild-type and mutant ataxin-1 were expressed in HEK-293T cells. The levels of expression were assessed using real-time polymerase chain reaction (PCR) and Western blots. Co-immunoprecipitation was done in HEK-293T cells expressing exogenous wild-type and mutant ataxin-1 using anti-Flag antibody following by tandem affinity purification in order to study protein-protein interactions. The candidate interacting proteins were validated by immunoprecipitation. Chromatin immunoprecipitation and high-throughput sequencing and RNA immunoprecipitation and high-throughput sequencing were performed using HEK-293T cells expressing wild-type or mutant ataxin-1. RESULTS: In this study using HEK-293T cells, we found that wild-type ataxin-1 interacted with MCM2, GNAS, and TMEM206, while mutant ataxin-1 lost its interaction with MCM2, GNAS, and TMEM206. Two ataxin-1 binding targets containing the core GGAG or AAAT were identified in HEK-293T cells using ChIP-seq. Gene Ontology analysis of the top ataxin-1 binding genes identified SLC6A15, NTF3, KCNC3, and DNAJC6 as functional genes in neurons in vitro. Ataxin-1 also was identified as an RNA-binding protein in HEK-293T cells using RIP-seq, but the polyglutamine expansion in the ataxin-1 had no direct effects on the RNA-binding activity of ataxin-1. CONCLUSIONS: An expanded polyglutamine tract in ataxin-1 might interfere with protein-protein or protein-DNA interactions but had little effect on protein-RNA interactions. This study suggested that the dysfunction of protein-protein or protein-DNA interactions is involved in the pathogenesis of SCA1.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Ataxias Espinocerebelosas , Ataxina-1/genética , Ataxina-1/metabolismo , Ataxinas/genética , Ataxinas/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , ARN , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
20.
Mol Pharm ; 20(2): 1331-1346, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688491

RESUMEN

Membrane transporters are the key determinants of the homeostasis of endogenous compounds in the cells and their exposure to drugs. However, the substrate specificities of distinct transporters can overlap. In the present study, the interactions of l-type amino acid transporter 1 (LAT1)-utilizing prodrugs with sodium-coupled neutral amino acid transporter 2 (SNAT2) were explored. The results showed that the cellular uptake of LAT1-utilizing prodrugs into a human breast cancer cell line, MCF-7 cells, was mediated via SNATs as the uptake was increased at higher pH (8.5), decreased in the absence of sodium, and inhibited in the presence of unselective SNAT-inhibitor, (α-(methylamino)isobutyric acid, MeAIB). Moreover, docking the compounds to a SNAT2 homology model (inward-open conformation) and further molecular dynamics simulations and the subsequent trajectory and principal component analyses confirmed the chemical features supporting the interactions of the studied compounds with SNAT2, which was found to be the main SNAT expressed in MCF-7 cells.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Profármacos , Humanos , Profármacos/química , Células MCF-7 , Sistemas de Transporte de Aminoácidos , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA