Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002001

RESUMEN

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Asunto(s)
Replicación del ADN , Mitosis , Afidicolina/farmacología , Proteína BRCA2/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Daño del ADN , Inestabilidad Genómica , Humanos , Mitosis/genética
2.
Genes Dev ; 34(19-20): 1392-1405, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883681

RESUMEN

TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Roturas del ADN de Doble Cadena , Replicación del ADN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Telómero/patología , Animales , Línea Celular , Células Cultivadas , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Fibroblastos , Humanos , Ratones , Recombinasas/genética , Recombinasas/metabolismo
3.
Nature ; 559(7714): 350-355, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995854

RESUMEN

The selective pressures that shape clonal evolution in healthy individuals are largely unknown. Here we investigate 8,342 mosaic chromosomal alterations, from 50 kb to 249 Mb long, that we uncovered in blood-derived DNA from 151,202 UK Biobank participants using phase-based computational techniques (estimated false discovery rate, 6-9%). We found six loci at which inherited variants associated strongly with the acquisition of deletions or loss of heterozygosity in cis. At three such loci (MPL, TM2D3-TARSL2, and FRA10B), we identified a likely causal variant that acted with high penetrance (5-50%). Inherited alleles at one locus appeared to affect the probability of somatic mutation, and at three other loci to be objects of positive or negative clonal selection. Several specific mosaic chromosomal alterations were strongly associated with future haematological malignancies. Our results reveal a multitude of paths towards clonal expansions with a wide range of effects on human health.


Asunto(s)
Aberraciones Cromosómicas , Células Clonales/citología , Células Clonales/metabolismo , Hematopoyesis/genética , Mosaicismo , Adulto , Anciano , Alelos , Bancos de Muestras Biológicas , Rotura Cromosómica , Sitios Frágiles del Cromosoma/genética , Cromosomas Humanos Par 10/genética , Femenino , Salud , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Penetrancia , Reino Unido
4.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34815340

RESUMEN

Common fragile sites (CFSs) are difficult-to-replicate genomic regions that form gaps and breaks on metaphase chromosomes under replication stress. They are hotspots for chromosomal instability in cancer. Repetitive sequences located at CFS loci are inefficiently copied by replicative DNA polymerase (Pol) delta. However, translesion synthesis Pol eta has been shown to efficiently polymerize CFS-associated repetitive sequences in vitro and facilitate CFS stability by a mechanism that is not fully understood. Here, by locus-specific, single-molecule replication analysis, we identified a crucial role for Pol eta (encoded by the gene POLH) in the in vivo replication of CFSs, even without exogenous stress. We find that Pol eta deficiency induces replication pausing, increases initiation events, and alters the direction of replication-fork progression at CFS-FRA16D in both lymphoblasts and fibroblasts. Furthermore, certain replication pause sites at CFS-FRA16D were associated with the presence of non-B DNA-forming motifs, implying that non-B DNA structures could increase replication hindrance in the absence of Pol eta. Further, in Pol eta-deficient fibroblasts, there was an increase in fork pausing at fibroblast-specific CFSs. Importantly, while not all pause sites were associated with non-B DNA structures, they were embedded within regions of increased genetic variation in the healthy human population, with mutational spectra consistent with Pol eta activity. From these findings, we propose that Pol eta replicating through CFSs may result in genetic variations found in the human population at these sites.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Línea Celular , Fragilidad Cromosómica/genética , Fragilidad Cromosómica/fisiología , ADN/genética , Daño del ADN/genética , ADN Polimerasa III/metabolismo , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Variación Genética/genética , Inestabilidad Genómica/genética , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo
5.
Nucleic Acids Res ; 49(1): 244-256, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290559

RESUMEN

The human genome contains hundreds of large, structurally diverse blocks that are insufficiently represented in the reference genome and are thus not amenable to genomic analyses. Structural diversity in the human population suggests that these blocks are unstable in the germline; however, whether or not these blocks are also unstable in the cancer genome remains elusive. Here we report that the 500 kb block called KRTAP_region_1 (KRTAP-1) on 17q12-21 recurrently demarcates the amplicon of the ERBB2 (HER2) oncogene in breast tumors. KRTAP-1 carries numerous tandemly-duplicated segments that exhibit diversity within the human population. We evaluated the fragility of the block by cytogenetically measuring the distances between the flanking regions and found that spontaneous distance outliers (i.e DNA breaks) appear more frequently at KRTAP-1 than at the representative common fragile site (CFS) FRA16D. Unlike CFSs, KRTAP-1 is not sensitive to aphidicolin. The exonuclease activity of DNA repair protein Mre11 protects KRTAP-1 from breaks, whereas CtIP does not. Breaks at KRTAP-1 lead to the palindromic duplication of the ERBB2 locus and trigger Breakage-Fusion-Bridge cycles. Our results indicate that an insufficiently investigated area of the human genome is fragile and could play a crucial role in cancer genome evolution.


Asunto(s)
Neoplasias de la Mama/genética , Sitios Frágiles del Cromosoma/genética , Reparación del ADN , Amplificación de Genes , Duplicación de Gen/genética , Genes erbB-2 , Queratinas Específicas del Pelo/fisiología , Afidicolina/farmacología , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Células Cultivadas , Inestabilidad Cromosómica , Roturas del ADN , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Células Epiteliales/metabolismo , Femenino , Variación Genética , Inestabilidad Genómica , Humanos , Proteína Homóloga de MRE11/fisiología , Proteínas de Neoplasias/fisiología , Secuenciación Completa del Genoma
6.
PLoS Genet ; 16(3): e1008524, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142505

RESUMEN

Common fragile sites (CFSs) are breakage-prone genomic loci, and are considered to be hotspots for genomic rearrangements frequently observed in cancers. Understanding the underlying mechanisms for CFS instability will lead to better insight on cancer etiology. Here we show that Polycomb group proteins BMI1 and RNF2 are suppressors of transcription-replication conflicts (TRCs) and CFS instability. Cells depleted of BMI1 or RNF2 showed slower replication forks and elevated fork stalling. These phenotypes are associated with increase occupancy of RNA Pol II (RNAPII) at CFSs, suggesting that the BMI1-RNF2 complex regulate RNAPII elongation at these fragile regions. Using proximity ligase assays, we showed that depleting BMI1 or RNF2 causes increased associations between RNAPII with EdU-labeled nascent forks and replisomes, suggesting increased TRC incidences. Increased occupancy of a fork protective factor FANCD2 and R-loop resolvase RNH1 at CFSs are observed in RNF2 CRISPR-KO cells, which are consistent with increased transcription-associated replication stress in RNF2-deficient cells. Depleting FANCD2 or FANCI proteins further increased genomic instability and cell death of the RNF2-deficient cells, suggesting that in the absence of RNF2, cells depend on these fork-protective factors for survival. These data suggest that the Polycomb proteins have non-canonical roles in suppressing TRC and preserving genomic integrity.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Replicación del ADN/genética , Complejo Represivo Polycomb 1/genética , Transcripción Genética/genética , Línea Celular , Línea Celular Tumoral , Inestabilidad Genómica/genética , Células HEK293 , Células HeLa , Humanos
7.
Genes Dev ; 29(7): 690-5, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25838540

RESUMEN

In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity.


Asunto(s)
Rotura Cromosómica , Sitios Frágiles del Cromosoma/genética , Dosificación de Gen/genética , Longevidad/genética , Proteínas Serina-Treonina Quinasas/genética , Ribonucleósido Difosfato Reductasa/genética , Animales , Línea Celular , Supervivencia Celular , Células Cultivadas , Activación Enzimática/genética , Fibroblastos/citología , Humanos , Ratones , Nucleósidos/metabolismo , Análisis de Supervivencia
8.
Mol Cell ; 54(6): 1012-1021, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24837675

RESUMEN

Chromosomal rearrangements often occur at genomic loci with DNA secondary structures, such as common fragile sites (CFSs) and palindromic repeats. We developed assays in mammalian cells that revealed CFS-derived AT-rich sequences and inverted Alu repeats (Alu-IRs) are mitotic recombination hotspots, requiring the repair functions of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) and the Mre11/Rad50/Nbs1 complex (MRN). We also identified an endonuclease activity of CtIP that is dispensable for end resection and homologous recombination (HR) at I-SceI-generated "clean" double-strand breaks (DSBs) but is required for repair of DSBs occurring at CFS-derived AT-rich sequences. In addition, CtIP nuclease-defective mutants are impaired in Alu-IRs-induced mitotic recombination. These studies suggest that an end resection-independent CtIP function is important for processing DSB ends with secondary structures to promote HR. Furthermore, our studies uncover an important role of MRN, CtIP, and their associated nuclease activities in protecting CFSs in mammalian cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Sitios Frágiles del Cromosoma/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Secuencias Invertidas Repetidas/genética , Proteínas Nucleares/metabolismo , Ácido Anhídrido Hidrolasas , Elementos Alu/genética , Composición de Base/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas , Endonucleasas/genética , Recombinación Homóloga/genética , Humanos , Proteína Homóloga de MRE11 , Mitosis/genética , Proteínas Nucleares/genética , Recombinación Genética
9.
Cell Mol Life Sci ; 78(5): 2095-2103, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33219838

RESUMEN

Chromosomal fragile sites are described as areas within the tightly packed mitotic chromatin that appear as breaks or gaps mostly tracing back to a loosened structure and not a real nicked break within the DNA molecule. Most facts about fragile sites result from studies in mitotic cells, mainly during metaphase and mainly in lymphocytes. Here, we synthesize facts about the genomic regions that are prone to form gaps and breaks on metaphase chromosomes in the context of interphase. We conclude that nuclear architecture shapes the activity profile of the cell, i.e. replication timing and transcriptional activity, thereby influencing genomic integrity during interphase with the potential to cause fragility in mitosis. We further propose fragile sites as examples of regions specifically positioned in the interphase nucleus with putative anchoring points at the nuclear lamina to enable a tightly regulated replication-transcription profile and diverse signalling functions in the cell. Consequently, fragility starts before the actual display as chromosomal breakage in metaphase to balance the initial contradiction of cellular overgrowth or malfunctioning and maintaining diversity in molecular evolution.


Asunto(s)
Núcleo Celular/genética , Inestabilidad Cromosómica/genética , Sitios Frágiles del Cromosoma/genética , Interfase/genética , Mitosis/genética , Animales , Núcleo Celular/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN/genética , Genoma Humano/genética , Humanos
10.
PLoS Genet ; 15(5): e1008169, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31100062

RESUMEN

The Pol32 protein is one of the universal subunits of DNA polymerase δ (Pol δ), which is responsible for genome replication in eukaryotic cells. Although the role of Pol32 in DNA repair has been well-characterized, its exact function in genome replication remains obscure as studies in single cell systems have not established an essential role for Pol32 in the process. Here we characterize Pol32 in the context of Drosophila melanogaster development. In the rapidly dividing embryonic cells, loss of Pol32 halts genome replication as it specifically disrupts Pol δ localization to the nucleus. This function of Pol32 in facilitating the nuclear import of Pol δ would be similar to that of accessory subunits of DNA polymerases from mammalian Herpes viruses. In post-embryonic cells, loss of Pol32 reveals mitotic fragile sites in the Drosophila genome, a defect more consistent with Pol32's role as a polymerase processivity factor. Interestingly, these fragile sites do not favor repetitive sequences in heterochromatin, with the rDNA locus being a striking exception. Our study uncovers a possibly universal function for DNA polymerase ancillary factors and establishes a powerful system for the study of chromosomal fragile sites in a non-mammalian organism.


Asunto(s)
Sitios Frágiles del Cromosoma/fisiología , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Animales , Sitios Frágiles del Cromosoma/genética , Fragilidad Cromosómica/genética , Fragilidad Cromosómica/fisiología , Reparación del ADN , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Mutagénesis , Señales de Localización Nuclear/metabolismo , Unión Proteica
11.
Annu Rev Genet ; 47: 1-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23909437

RESUMEN

Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.


Asunto(s)
Inestabilidad Genómica , Envejecimiento/genética , Animales , Puntos de Control del Ciclo Celular , Sitios Frágiles del Cromosoma/genética , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Neoplasias/genética , Células Eucariotas/citología , Humanos , Mamíferos/genética , Modelos Genéticos , Mutación , Neoplasias/genética , Conformación de Ácido Nucleico , Estrés Oxidativo , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Fase S , Transcripción Genética , Levaduras/genética
12.
Nucleic Acids Res ; 47(18): 9685-9695, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31410468

RESUMEN

Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.


Asunto(s)
Inestabilidad Cromosómica/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Repeticiones de Dinucleótido/genética , Replicación del ADN/genética , Genoma Humano , Humanos , Conformación de Ácido Nucleico
13.
Nucleic Acids Res ; 46(6): 2932-2944, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29394375

RESUMEN

During mild replication stress provoked by low dose aphidicolin (APH) treatment, the key Fanconi anemia protein FANCD2 accumulates on common fragile sites, observed as sister foci, and protects genome stability. To gain further insights into FANCD2 function and its regulatory mechanisms, we examined the genome-wide chromatin localization of FANCD2 in this setting by ChIP-seq analysis. We found that FANCD2 mostly accumulates in the central regions of a set of large transcribed genes that were extensively overlapped with known CFS. Consistent with previous studies, we found that this FANCD2 retention is R-loop-dependent. However, FANCD2 monoubiquitination and RPA foci formation were still induced in cells depleted of R-loops. Interestingly, we detected increased Proximal Ligation Assay dots between FANCD2 and R-loops following APH treatment, which was suppressed by transcriptional inhibition. Collectively, our data suggested that R-loops are required to retain FANCD2 in chromatin at the middle intronic region of large genes, while the replication stress-induced upstream events leading to the FA pathway activation are not triggered by R-loops.


Asunto(s)
Cromatina/genética , Sitios Frágiles del Cromosoma/genética , Replicación del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Afidicolina/farmacología , Línea Celular Tumoral , Cromatina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Conformación de Ácido Nucleico , Transducción de Señal/genética , Ubiquitinación/efectos de los fármacos
14.
Mol Cell ; 44(6): 966-77, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195969

RESUMEN

We show that the time required to transcribe human genes larger than 800 kb spans more than one complete cell cycle, while their transcription speed equals that of smaller genes. Independently of their expression status, we find the long genes to replicate late. Regions of concomitant transcription and replication in late S phase exhibit DNA break hot spots known as common fragile sites (CFSs). This CFS instability depends on the expression of the underlying long genes. We show that RNA:DNA hybrids (R-loops) form at sites of transcription/replication collisions and that RNase H1 functions to suppress CFS instability. In summary, our results show that, on the longest human genes, collisions of the transcription machinery with a replication fork are inevitable, creating R-loops and consequent CFS formation. Functional replication machinery needs to be involved in the resolution of conflicts between transcription and replication machineries to ensure genomic stability.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Replicación del ADN , Genes/genética , Inestabilidad Genómica/genética , Transcripción Genética , Ciclo Celular/genética , ADN/genética , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos , ARN/genética , ARN/metabolismo , ARN Polimerasa II/metabolismo , Ribonucleasa H/metabolismo , Factores de Tiempo
15.
PLoS Genet ; 12(12): e1006436, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27977694

RESUMEN

The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.


Asunto(s)
Carcinogénesis/genética , Sitios Frágiles del Cromosoma/genética , Genes Supresores de Tumor , Neoplasias/genética , Daño del ADN/genética , Inestabilidad Genómica , Humanos , Neoplasias/patología
16.
Genet Med ; 20(11): 1472-1476, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29493577

RESUMEN

PURPOSE: Using genome-wide noninvasive prenatal screening (NIPS), we detected a 20-megabase specific deletion starting at 10q25 in eight pregnancies. The deletion could not be confirmed by invasive testing. Since all 10(q25→qter) deletions started close to the FRA10B fragile site in 10q25, we investigated whether the pregnant women were indeed carriers of FRA10B. METHODS: We performed NIPS analysis for all autosomes using single-read sequencing. Analysis was done with the WISECONDOR algorithm. Culture of blood lymphocytes with bromodeoxyuridine was used to detect FRA10B expansions. Fluorescence in situ hybridization and array analysis were used to find maternal and/or fetal deletions. RESULTS: We confirmed the presence of a FRA10B expansion in all four tested mothers. Fluorescence in situ hybridization and array analysis confirmed the presence of a maternal mosaic deletion of 10(q25→qter). CONCLUSION: The recurring 10(q25→qter) deletion detected with NIPS is a false-positive result caused by a maternal low-level mosaic deletion associated with FRA10B expansions. This has important consequences for clinical follow-up, as invasive procedures are unnecessary. Expanded maternal FRA10B repeats should be added to the growing group of variants in the maternal genome that may cause false-positive NIPS results.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Pruebas Genéticas/normas , Diagnóstico Prenatal/métodos , Trisomía/genética , Adulto , Deleción Cromosómica , Cromosomas Humanos Par 10/genética , Femenino , Feto , Genoma Humano/genética , Humanos , Hibridación Fluorescente in Situ , Embarazo , Eliminación de Secuencia/genética , Trisomía/diagnóstico
17.
Biochim Biophys Acta Gen Subj ; 1862(3): 649-659, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29246583

RESUMEN

Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.


Asunto(s)
Puntos de Rotura del Cromosoma , Sitios Frágiles del Cromosoma/genética , Cromosomas Humanos Par 14/ultraestructura , Cromosomas Humanos Par 18/ultraestructura , ADN Cruciforme/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Translocación Genética , Secuencia de Bases , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Inestabilidad Cromosómica/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 18/genética , Dicroismo Circular , ADN Cruciforme/análisis , Electroforesis en Gel de Poliacrilamida , Predisposición Genética a la Enfermedad , Humanos , Leucemia de Células B/patología , Modelos Genéticos , Transcripción Genética/genética
18.
Adv Exp Med Biol ; 1056: 87-108, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29754176

RESUMEN

MicroRNAs (miRNAs) are a class of short non-coding RNAs (ncRNAs) with typical sequence lengths of 19-25 nucleotides and extraordinary abilities to regulate gene expression. Because miRNAs regulate multiple important biological functions of the cell (proliferation, migration, invasion, apoptosis, differentiation, and drug resistance), their expression is highly controlled. Genetic and epigenetic alterations frequently found in cancer cells can cause aberrant expression of miRNAs and, consequently, of their target genes. The tumor microenvironment can also affect miRNA expression through soluble factors (e.g., cytokines and growth factors) secreted by either tumor cells or non-tumor cells (such as immune and stromal cells). Furthermore, like hormones, miRNAs can be secreted and regulate gene expression in recipient cells. Altered expression levels of miRNAs in cancer cells determine the acquisition of fundamental biological capabilities (hallmarks of cancer) responsible for the development and progression of the disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , ARN Neoplásico/genética , Animales , Biomarcadores de Tumor , Comunicación Celular/genética , Autorrenovación de las Células/genética , Sitios Frágiles del Cromosoma/genética , Epigénesis Genética/genética , Exosomas/genética , Exosomas/fisiología , Espacio Extracelular , Genes Supresores de Tumor , Humanos , MicroARNs/biosíntesis , MicroARNs/sangre , MicroARNs/metabolismo , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/citología , Neovascularización Patológica/genética , Oncogenes/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/sangre , ARN Neoplásico/metabolismo , Escape del Tumor/genética , Microambiente Tumoral
19.
PLoS Genet ; 11(7): e1005384, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26181065

RESUMEN

Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.


Asunto(s)
Síndrome de Bloom/genética , Citidina Desaminasa/genética , Poli(ADP-Ribosa) Polimerasas/genética , Pirimidinas/metabolismo , Síndrome de Bloom/patología , Línea Celular , Centrómero/genética , Sitios Frágiles del Cromosoma/genética , Segregación Cromosómica/genética , Citidina Desaminasa/deficiencia , Replicación del ADN/genética , Inestabilidad Genómica , Humanos , Mitosis/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/biosíntesis , RecQ Helicasas/genética , Intercambio de Cromátides Hermanas/genética
20.
Genes Chromosomes Cancer ; 56(1): 59-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27636103

RESUMEN

Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Sitios Frágiles del Cromosoma/genética , Reordenamiento Génico , Neoplasias Orofaríngeas/genética , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , Integración Viral/genética , Emparejamiento Base , Secuencia de Bases , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Aberraciones Cromosómicas , Humanos , Proteínas de la Membrana/genética , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Pronóstico , Receptores de LDL/genética , Homología de Secuencia de Ácido Nucleico , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA