Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Plant J ; 117(5): 1305-1316, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169533

RESUMEN

Seeds of the root parasitic plant Striga hermonthica undergo a conditioning process under humid and warm environments before germinating in response to host-released stimulants, particularly strigolactones (SLs). The plant hormone abscisic acid (ABA) regulates different growth and developmental processes, and stress response; however, its role during Striga seed germination and early interactions with host plants is under-investigated. Here, we show that ABA inhibited Striga seed germination and that hindering its biosynthesis induced conditioning and germination in unconditioned seeds, which was significantly enhanced by treatment with the SL analog rac-GR24. However, the inhibitory effect of ABA remarkably decreased during conditioning, confirming the loss of sensitivity towards ABA in later developmental stages. ABA measurement showed a substantial reduction of its content during the early conditioning stage and a significant increase upon rac-GR24-triggered germination. We observed this increase also in released seed exudates, which was further confirmed by using the Arabidopsis ABA-reporter GUS marker line. Seed exudates of germinated seeds, containing elevated levels of ABA, impaired the germination of surrounding Striga seeds in vitro and promoted root growth of a rice host towards germinated Striga seeds. Application of ABA as a positive control caused similar effects, indicating its function in Striga/Striga and Striga/host communications. In summary, we show that ABA is an essential player during seed dormancy and germination processes in Striga and acts as a rhizospheric signal likely to support host infestation.


Asunto(s)
Arabidopsis , Striga , Ácido Abscísico/farmacología , Germinación , Striga/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Semillas
2.
Ann Bot ; 134(1): 59-70, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38428944

RESUMEN

BACKGROUND AND AIMS: Infection by the hemi-parasitic plant Striga hermonthica causes severe host plant damage and seed production losses. Increased availability of essential plant nutrients reduces infection. Whether, how and to what extent it also reduces striga-induced host plant damage has not been well studied. METHODS: The effects of improved macro- and micronutrient supply on host plant performance under striga-free and infected conditions were investigated in glasshouse pot assays. One striga-sensitive and two striga-tolerant genotypes were compared. Plants growing in impoverished soils were supplied with (1) 25 % of optimal macro- and micronutrient quantities, (2) 25 % macro- and 100 % micronutrients, (3) 100 % macro- and 25 % micronutrients, or (4) 100 % macro- and micronutrients. KEY RESULTS: Photosynthesis rates of striga-infected plants of the sensitive genotype increased with improved nutrition (from 12.2 to 22.1 µmol m-2 s-1) but remained below striga-free levels (34.9-38.8 µmol m-2 s-1). For the tolerant genotypes, increased macronutrient supply offset striga-induced photosynthesis losses. Striga-induced relative grain losses of 100 % for the sensitive genotype were reduced to 74 % by increased macronutrients. Grain losses of 80 % in the tolerant Ochuti genotype, incurred at low nutrient supply, were reduced to 5 % by improved nutrient supply. CONCLUSIONS: Increasing macronutrient supply reduces the impact of striga on host plants but can only restore losses when applied to genotypes with a tolerant background.


Asunto(s)
Genotipo , Nutrientes , Fotosíntesis , Sorghum , Striga , Striga/fisiología , Sorghum/genética , Sorghum/parasitología , Sorghum/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Suelo/química
3.
Plant Physiol ; 189(4): 2281-2297, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35543497

RESUMEN

The parasitic plant Striga (Striga hermonthica) invades the host root through the formation of a haustorium and has detrimental impacts on cereal crops. The haustorium results from the prehaustorium, which is derived directly from the differentiation of the Striga radicle. The molecular mechanisms leading to radicle differentiation shortly after germination remain unclear. In this study, we determined the developmental programs that regulate terminal prehaustorium formation in S. hermonthica at cellular resolution. We showed that shortly after germination, cells in the root meristem undergo multiplanar divisions. During growth, the meristematic activity declines and associates with reduced expression of the stem cell regulator PLETHORA1 and the cell cycle genes CYCLINB1 and HISTONE H4. We also observed a basal localization of the PIN-FORMED (PIN) proteins and a decrease in auxin levels in the meristem. Using the structural layout of the root meristem and the polarity of outer-membrane PIN proteins, we constructed a mathematical model of auxin transport that explains the auxin distribution patterns observed during S. hermonthica root growth. Our results reveal a fundamental molecular and cellular framework governing the switch of S. hermonthica roots to form the invasive prehaustoria.


Asunto(s)
Striga , Productos Agrícolas , Germinación/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Striga/fisiología
4.
Proc Natl Acad Sci U S A ; 117(8): 4243-4251, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047036

RESUMEN

Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Asunto(s)
Sorghum/genética , Striga/genética , Adaptación Fisiológica , Variación Genética , Genoma de Planta , Genómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malezas/genética , Malezas/fisiología , Sorghum/fisiología , Striga/fisiología
5.
Plant J ; 108(6): 1609-1623, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34647389

RESUMEN

Mycoheterotrophic and parasitic plants are heterotrophic and parasitize on fungi and plants, respectively, to obtain nutrients. Large-scale comparative genomics analysis has not been conducted in mycoheterotrophic or parasitic plants or between these two groups of parasites. We assembled a chromosome-level genome of the fully mycoheterotrophic plant Gastrodia elata (Orchidaceae) and performed comparative genomic analyses on the genomes of G. elata and four orchids (initial mycoheterotrophs), three parasitic plants (Cuscuta australis, Striga asiatica, and Sapria himalayana), and 36 autotrophs from various angiosperm lineages. It was found that while in the hemiparasite S. asiatica and initial mycoheterotrophic orchids, approximately 4-5% of the conserved orthogroups were lost, the fully heterotrophic G. elata and C. australis both lost approximately 10% of the conserved orthogroups, indicating that increased heterotrophy is positively associated with gene loss. Importantly, many genes that are essential for autotrophs, including those involved in photosynthesis, the circadian clock, flowering time regulation, immunity, nutrient uptake, and root and leaf development, were convergently lost in both G. elata and C. australis. The high-quality genome of G. elata will facilitate future studies on the physiology, ecology, and evolution of mycoheterotrophic plants, and our findings highlight the critical role of gene loss in the evolution of plants with heterotrophic lifestyles.


Asunto(s)
Gastrodia/genética , Genes de Plantas , Genoma de Planta , Procesos Heterotróficos/genética , Cromosomas de las Plantas , Relojes Circadianos/genética , Evolución Molecular , Flores/genética , Flores/fisiología , Gastrodia/fisiología , Genómica , Intrones , Magnoliopsida/genética , Magnoliopsida/fisiología , Anotación de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Inmunidad de la Planta/genética , Striga/genética , Striga/fisiología , Simbiosis/genética
6.
Plant Physiol ; 185(4): 1411-1428, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793945

RESUMEN

Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Lactonas/metabolismo , Ligandos , Raíces de Plantas/metabolismo , Malezas/metabolismo , Striga/fisiología , Striga/parasitología , Interacciones Huésped-Parásitos/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Striga/genética
7.
Plant Physiol ; 185(4): 1339-1352, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793943

RESUMEN

The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Malezas/parasitología , Striga/fisiología , Striga/parasitología , Control de Malezas/métodos
8.
Theor Appl Genet ; 134(3): 941-958, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388884

RESUMEN

KEY MESSAGE: Genome-wide association revealed that resistance to Striga hermonthica is influenced by multiple genomic regions with moderate effects. It is possible to increase genetic gains from selection for Striga resistance using genomic prediction. Striga hermonthica (Del.) Benth., commonly known as the purple witchweed or giant witchweed, is a serious problem for maize-dependent smallholder farmers in sub-Saharan Africa. Breeding for Striga resistance in maize is complicated due to limited genetic variation, complexity of resistance and challenges with phenotyping. This study was conducted to (i) evaluate a set of diverse tropical maize lines for their responses to Striga under artificial infestation in three environments in Kenya; (ii) detect quantitative trait loci associated with Striga resistance through genome-wide association study (GWAS); and (iii) evaluate the effectiveness of genomic prediction (GP) of Striga-related traits. An association mapping panel of 380 inbred lines was evaluated in three environments under artificial Striga infestation in replicated trials and genotyped with 278,810 single-nucleotide polymorphism (SNP) markers. Genotypic and genotype x environment variations were significant for measured traits associated with Striga resistance. Heritability estimates were moderate (0.42) to high (0.92) for measured traits. GWAS revealed 57 SNPs significantly associated with Striga resistance indicator traits and grain yield (GY) under artificial Striga infestation with low to moderate effect. A set of 32 candidate genes physically near the significant SNPs with roles in plant defense against biotic stresses were identified. GP with different cross-validations revealed that prediction of performance of lines in new environments is better than prediction of performance of new lines for all traits. Predictions across environments revealed high accuracy for all the traits, while inclusion of GWAS-detected SNPs led to slight increase in the accuracy. The item-based collaborative filtering approach that incorporates related traits evaluated in different environments to predict GY and Striga-related traits outperformed GP for Striga resistance indicator traits. The results demonstrated the polygenic nature of resistance to S. hermonthica, and that implementation of GP in Striga resistance breeding could potentially aid in increasing genetic gain for this important trait.


Asunto(s)
Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Malezas/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Striga/fisiología , Zea mays/genética , Alelos , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Ligamiento Genético , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/parasitología , Zea mays/inmunología , Zea mays/parasitología
9.
Cell Mol Life Sci ; 77(6): 1103-1113, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31587093

RESUMEN

The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.


Asunto(s)
Productos Agrícolas/parasitología , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Striga/crecimiento & desarrollo , Control de Malezas , Germinación/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Lactonas/agonistas , Lactonas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/agonistas , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Raíces de Plantas/parasitología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Transducción de Señal/efectos de los fármacos , Striga/efectos de los fármacos , Striga/fisiología , Control de Malezas/métodos
10.
Molecules ; 26(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34833966

RESUMEN

Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH• and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25-14.14 mg GAE/g (total phenolics), 3.62-4.67 mg QE/g (total flavonoids), 3.63-6.29 mg/g (tannins), 3.66-4.31% (phytate), 8.92-12.11 µg/g (total xanthophylls), 2.42-2.89 µg/g (total ß-carotene), and 3.17-3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH• (SC50: 9.07-26.35 mg/mL) and ABTS•+ (2.65-7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64-0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28-52.55 mg/mL and 47.72-63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH• SC50 (p < 0.01, r = -0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = -0.836) and α-glucosidase IC50 (p < 0.05, r = -0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.


Asunto(s)
Antioxidantes/análisis , Inhibidores de Glicósido Hidrolasas/análisis , Fitoquímicos/análisis , Zea mays/química , alfa-Amilasas/antagonistas & inhibidores , Antioxidantes/farmacología , Resistencia a la Enfermedad , Flavonoides/análisis , Flavonoides/farmacología , Geobacillus stearothermophilus/enzimología , Inhibidores de Glicósido Hidrolasas/farmacología , Estrés Oxidativo , Fenoles/análisis , Fenoles/farmacología , Fitoquímicos/farmacología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/análisis , Striga/fisiología , Taninos/análisis , Taninos/farmacología , Zea mays/parasitología
11.
BMC Plant Biol ; 20(1): 203, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393176

RESUMEN

BACKGROUND: Striga hermonthica (Benth.) parasitism militates against increased maize production and productivity in savannas of sub-Saharan Africa (SSA). Identification of Striga resistance genes is important in developing genotypes with durable resistance. So far, there is only one report on the existence of QTL for Striga resistance on chromosome 6 of maize. The objective of this study was to identify genomic regions significantly associated with grain yield and other agronomic traits under artificial Striga field infestation. A panel of 132 early-maturing maize inbreds were phenotyped for key agronomic traits under Striga-infested and Striga-free conditions. The inbred lines were also genotyped using 47,440 DArTseq markers from which 7224 markers were retained for population structure analysis and genome-wide association study (GWAS). RESULTS: The inbred lines were grouped into two major clusters based on structure analysis as well as the neighbor-joining hierarchical clustering. A total of 24 SNPs significantly associated with grain yield, Striga damage at 8 and 10 weeks after planting (WAP), ears per plant and ear aspect under Striga infestation were detected. Under Striga-free conditions, 11 SNPs significantly associated with grain yield, number of ears per plant and ear aspect were identified. Three markers physically located close to the putative genes GRMZM2G164743 (bin 10.05), GRMZM2G060216 (bin 3.06) and GRMZM2G103085 (bin 5.07) were detected, linked to grain yield, Striga damage at 8 and 10 WAP and number of ears per plant under Striga infestation, explaining 9 to 42% of the phenotypic variance. Furthermore, the S9_154,978,426 locus on chromosome 9 was found at 2.61 Mb close to the ZmCCD1 gene known to be associated with the reduction of strigolactone production in the maize roots. CONCLUSIONS: Presented in this study is the first report of the identification of significant loci on chromosomes 9 and 10 of maize that are closely linked to ZmCCD1 and amt5 genes, respectively and may be related to plant defense mechanisms against Striga parasitism. After validation, the identified loci could be targets for breeders for marker-assisted selection (MAS) to accelerate genetic enhancement of maize for Striga resistance in the tropics, particularly in SSA, where the parasitic weed is endemic.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/inmunología , Striga/fisiología , Zea mays/genética , Grano Comestible , Sitios Genéticos , Genotipo , Fenotipo , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple/genética , Zea mays/inmunología , Zea mays/parasitología
12.
Plant Physiol ; 179(4): 1796-1809, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670602

RESUMEN

Striga species are parasitic weeds that seriously constrain the productivity of food staples, including cereals and legumes, in Sub-Saharan Africa and Asia. In eastern and central Africa, Striga spp. infest as much as 40 million hectares of smallholder farmland causing total crop failure during severe infestation. As the molecular mechanisms underlying resistance are yet to be elucidated, we undertook a comparative metabolome study using the Striga-resistant rice (Oryza sativa) cultivar 'Nipponbare' and the susceptible cultivar 'Koshihikari'. We found that a number of metabolites accumulated preferentially in the Striga-resistant cultivar upon Striga hermonthica infection. Most apparent was increased deposition of lignin, a phenylpropanoid polymer mainly composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) aromatic units, around the site of interaction in Nipponbare. The increased deposition of lignin was accompanied by induction of the expression of corresponding enzyme-encoding genes in the phenylpropanoid pathway. In addition, perturbing normal lignin composition by knocking down or overexpressing the genes that regulate lignin composition, i.e. p-COUMARATE 3-HYDROXYLASE or FERULATE 5-HYDROXYLASE, enhanced susceptibility of Nipponbare to S hermonthica infection. These results demonstrate that enhanced lignin deposition and maintenance of the structural integrity of lignin polymers deposited at the infection site are crucial for postattachment resistance against S hermonthica.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Lignina/química , Oryza/genética , Striga/fisiología , Lignina/genética , Oryza/parasitología , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología
13.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021834

RESUMEN

Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub-Saharan Africa. For germination, Striga seeds require host-released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X-100 inhibits S. hermonthica seed germination without affecting host plants. High-resolution X-ray structures reveal that Triton X-100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7-specific inhibition by Triton X-100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga-specific herbicides.


Asunto(s)
Germinación/efectos de los fármacos , Herbicidas/química , Hidrolasas/química , Octoxinol/química , Proteínas de Plantas/química , Malezas/química , Striga/enzimología , Control de Malezas , Cristalografía por Rayos X , Herbicidas/farmacología , Hidrolasas/antagonistas & inhibidores , Octoxinol/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Malezas/efectos de los fármacos , Malezas/enzimología , Unión Proteica , Conformación Proteica , Transducción de Señal , Striga/efectos de los fármacos , Striga/fisiología
14.
Proc Natl Acad Sci U S A ; 114(17): 4471-4476, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396420

RESUMEN

Striga is a major biotic constraint to sorghum production in semiarid tropical Africa and Asia. Genetic resistance to this parasitic weed is the most economically feasible control measure. Mutant alleles at the LGS1 (LOW GERMINATION STIMULANT 1) locus drastically reduce Striga germination stimulant activity. We provide evidence that the responsible gene at LGS1 codes for an enzyme annotated as a sulfotransferase and show that functional loss of this gene results in a change of the dominant strigolactone (SL) in root exudates from 5-deoxystrigol, a highly active Striga germination stimulant, to orobanchol, an SL with opposite stereochemistry. Orobanchol, although not previously reported in sorghum, functions in the multiple SL roles required for normal growth and environmental responsiveness but does not stimulate germination of Striga This work describes the identification of a gene regulating Striga resistance and the underlying protective chemistry resulting from mutation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/parasitología , Striga/fisiología , Interacciones Huésped-Parásitos , Lactonas/química , Estructura Molecular , Mutación , Exudados de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/metabolismo
15.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260931

RESUMEN

Parasitic plants have a unique heterotrophic lifestyle based on the extraction of water and nutrients from host plants. Some parasitic plant species, particularly those of the family Orobanchaceae, attack crops and cause substantial yield losses. The breeding of resistant crop varieties is an inexpensive way to control parasitic weeds, but often does not provide a long-lasting solution because the parasites rapidly evolve to overcome resistance. Understanding mechanisms underlying naturally occurring parasitic plant resistance is of great interest and could help to develop methods to control parasitic plants. In this review, we describe the virulence mechanisms of parasitic plants and resistance mechanisms in their hosts, focusing on obligate root parasites of the genera Orobanche and Striga. We noticed that the resistance (R) genes in the host genome often encode proteins with nucleotide-binding and leucine-rich repeat domains (NLR proteins), hence we proposed a mechanism by which host plants use NLR proteins to activate downstream resistance gene expression. We speculated how parasitic plants and their hosts co-evolved and discussed what drives the evolution of virulence effectors in parasitic plants by considering concepts from similar studies of plant-microbe interaction. Most previous studies have focused on the host rather than the parasite, so we also provided an updated summary of genomic resources for parasitic plants and parasitic genes for further research to test our hypotheses. Finally, we discussed new approaches such as CRISPR/Cas9-mediated genome editing and RNAi silencing that can provide deeper insight into the intriguing life cycle of parasitic plants and could potentially contribute to the development of novel strategies for controlling parasitic weeds, thereby enhancing crop productivity and food security globally.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Orobanche/parasitología , Striga/fisiología , Evolución Biológica , Orobanche/genética , Striga/genética , Transcriptoma/genética , Virulencia/genética
16.
BMC Plant Biol ; 19(1): 129, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953477

RESUMEN

BACKGROUND: Maize yield potential is rarely maximized in sub-Saharan Africa (SSA) due to the devastating effects of drought stress and Striga hermonthica parasitism. This study was conducted to determine the gains in grain yield and associated changes in an early-maturing yellow bi-parental maize population (TZEI 17 x TZEI 11) F3 following genomic selection (GS) for improved grain yield, Striga resistance and drought tolerance. Fifty S1 lines were extracted from each of cycles C0, C1, C2 and C3 of the population and crossed to a tester TZEI 23 to generate 200 testcrosses. The testcrosses were evaluated under drought, artificial Striga-infested and optimal (free from Striga infestation and without limitation of water and nitrogen) environments in Nigeria, 2014-2017. RESULTS: Gains in grain yield of 498 kg ha- 1 cycle- 1 (16.9% cycle- 1) and 522 kg ha- 1 cycle- 1 (12.6% cycle- 1) were obtained under Striga-infested and optimal environments, respectively. The yield gain under Striga-infested environments was associated with increased plant and ear heights as well as improvement in root lodging resistance, husk cover, ear aspect and Striga tolerance. Under optimal environments, yield gain was accompanied by increase in plant and ear heights along with improvement of husk cover and ear rot resistance. In contrast, genomic selection did not improve grain yield under drought but resulted in delayed flowering, poor pollen-silk synchrony during flowering and increased ear height. Genetic variances and heritabilities for most measured traits were not significant for the selection cycles under the research environments. Ear aspect was a major contributor to grain yield under all research environments and could serve as an indirect selection criterion for simultaneous improvement of grain yield under drought, Striga and optimal environments. CONCLUSION: This study demonstrated that genomic selection was effective for yield improvement in the bi-parental maize population under Striga-infested environments and resulted in concomitant yield gains under optimal environments. However, due to low genetic variability of most traits in the population, progress from further genomic selection could only be guaranteed if new sources of genes for Striga resistance and drought tolerance are introgressed into the population.


Asunto(s)
Selección Genética , Estrés Fisiológico , Striga/fisiología , Zea mays/genética , Sequías , Genómica , Fenotipo , Zea mays/inmunología , Zea mays/parasitología , Zea mays/fisiología
17.
Plant Physiol ; 174(2): 1250-1259, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28404726

RESUMEN

Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections.


Asunto(s)
Giberelinas/metabolismo , Lactonas/metabolismo , Transducción de Señal , Genes de Plantas , Germinación/efectos de los fármacos , Mutación/genética , Oryza/genética , Oryza/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/parasitología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Striga/fisiología
18.
J Exp Bot ; 69(9): 2281-2290, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29474634

RESUMEN

Plant-derived strigolactones have diverse functions at ecological scale, including effects upon the growth of plants themselves. The parasitic plants from the family Orobanchaceae interfere with the ecological and hormonal functions of strigolactones to generate unique germination abilities based on the sensing of host-derived strigolactones. Although the recent discovery of strigolactone receptors has enabled us to begin elucidating the mechanism of strigolactone perception, how perception relates to plant parasitism is still a mystery. In this review, we explore emerging questions by introducing recent advances in strigolactone research in parasitic plants. We also attempt to construct a conceptual framework for the unique in planta dynamics of strigolactone perception uncovered through the use of fluorescent probes for strigolactone receptors. Understanding the mechanisms of strigolactone-related processes is essential for controlling the parasitic plant Striga hermonthica, which has caused devastating damage to crop production in Africa.


Asunto(s)
Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Malezas/fisiología , Striga/fisiología , Germinación , Transducción de Señal
19.
J Exp Bot ; 69(9): 2415-2430, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29415281

RESUMEN

Sorghum is an important food, feed, and industrial crop worldwide. Parasitic weeds of the genus Striga constitute a major constraint to sorghum production, particularly in the drier parts of the world. In this study we analysed the Striga germination stimulants, strigolactones, in the root exudates of 36 sorghum genotypes and assessed Striga germination and infection. Low germination-stimulating activity and low Striga infection correlated with the exudation of low amounts of 5-deoxystrigol and high amounts of orobanchol, whereas susceptibility to Striga and high germination-stimulating activity correlated with high concentrations of 5-deoxystrigol and low concentrations of orobanchol. Marker analysis suggested that similar genetics to those previously described for the resistant sorghum variety SRN39 and the susceptible variety Shanqui Red underlie these differences. This study shows that the strigolactone profile in the root exudate of sorghum has a large impact on the level of Striga infection. High concentrations of 5-deoxystrigol result in high infection, while high concentrations of orobanchol result in low infection. This knowledge should help to optimize the use of low germination stimulant-based resistance to Striga by the selection of sorghum genotypes with strigolactone profiles that favour normal growth and development, but reduce the risk of Striga infection.


Asunto(s)
Antibiosis/genética , Variación Genética , Lactonas , Malezas/fisiología , Sorghum/fisiología , Striga/fisiología , Lactonas/metabolismo , Sorghum/genética
20.
J Nat Prod ; 81(11): 2321-2328, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30362743

RESUMEN

Strigolactones are a particular class of plant metabolites with diverse biological functions starting from the stimulation of parasitic seed germination to phytohormonal activity. The expansion of parasitic weeds in the fields of developing countries is threatening the food supply and calls for simple procedures to combat these weeds. Strigolactone analogues represent a promising approach for such control through suicidal germination, i.e., parasitic seed germination without the presence of the host causing parasite death. In the present work, the synthesis of resorcinol-type strigolactone mimics related to debranones is reported. These compounds were highly stable even at alkaline pH levels and able to induce seed germination of parasitic plants Striga hermonthica and Phelipanche ramosa at low concentrations, EC50 ≈ 2 × 10-7 M ( Striga) and EC50 ≈ 2 × 10-9 M ( Phelipanche). On the other hand, the mimics had no significant effect on root architecture of Arabidopsis plants, suggesting a selective activity for parasitic seed germination, making them a primary target as suicidal germinators.


Asunto(s)
Germinación/efectos de los fármacos , Lactonas/farmacología , Orobanchaceae/fisiología , Resorcinoles/química , Lactonas/química , Orobanchaceae/embriología , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/efectos de los fármacos , Semillas/fisiología , Striga/embriología , Striga/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA