Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Cell ; 168(1-2): 101-110.e10, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086082

RESUMEN

ATP-sensitive potassium channels (KATP) couple intracellular ATP levels with membrane excitability. These channels play crucial roles in many essential physiological processes and have been implicated extensively in a spectrum of metabolic diseases and disorders. To gain insight into the mechanism of KATP, we elucidated the structure of a hetero-octameric pancreatic KATP channel in complex with a non-competitive inhibitor glibenclamide by single-particle cryoelectron microscopy to 5.6-Å resolution. The structure shows that four SUR1 regulatory subunits locate peripherally and dock onto the central Kir6.2 channel tetramer through the SUR1 TMD0-L0 fragment. Glibenclamide-bound SUR1 uses TMD0-L0 fragment to stabilize Kir6.2 channel in a closed conformation. In another structural population, a putative co-purified phosphatidylinositol 4,5-bisphosphate (PIP2) molecule uncouples Kir6.2 from glibenclamide-bound SUR1. These structural observations suggest a molecular mechanism for KATP regulation by anti-diabetic sulfonylurea drugs, intracellular adenosine nucleotide concentrations, and PIP2 lipid.


Asunto(s)
Canales KATP/química , Canales KATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Mamíferos/metabolismo , Mesocricetus , Ratones , Modelos Moleculares , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385322

RESUMEN

ABCB4 is expressed in hepatocytes and translocates phosphatidylcholine into bile canaliculi. The mechanism of specific lipid recruitment from the canalicular membrane, which is essential to mitigate the cytotoxicity of bile salts, is poorly understood. We present cryogenic electron microscopy structures of human ABCB4 in three distinct functional conformations. An apo-inward structure reveals how phospholipid can be recruited from the inner leaflet of the membrane without flipping its orientation. An occluded structure reveals a single phospholipid molecule in a central cavity. Its choline moiety is stabilized by cation-π interactions with an essential tryptophan residue, rationalizing the specificity of ABCB4 for phosphatidylcholine. In an inhibitor-bound structure, a posaconazole molecule blocks phospholipids from reaching the central cavity. Using a proteoliposome-based translocation assay with fluorescently labeled phosphatidylcholine analogs, we recapitulated the substrate specificity of ABCB4 in vitro and confirmed the role of the key tryptophan residue. Our results provide a structural basis for understanding an essential translocation step in the generation of bile and its sensitivity to azole drugs.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Fosfatidilcolinas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transporte Biológico , Técnicas de Visualización de Superficie Celular , Microscopía por Crioelectrón , Epítopos , Regulación de la Expresión Génica , Variación Genética , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas , Modelos Moleculares , Conformación Proteica
3.
Nature ; 543(7647): 738-741, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28289287

RESUMEN

ATP binding cassette (ABC) transporters of the exporter class harness the energy of ATP hydrolysis in the nucleotide-binding domains (NBDs) to power the energetically uphill efflux of substrates by a dedicated transmembrane domain (TMD). Although numerous investigations have described the mechanism of ATP hydrolysis and defined the architecture of ABC exporters, a detailed structural dynamic understanding of the transduction of ATP energy to the work of substrate translocation remains elusive. Here we used double electron-electron resonance and molecular dynamics simulations to describe the ATP- and substrate-coupled conformational cycle of the mouse ABC efflux transporter P-glycoprotein (Pgp; also known as ABCB1), which has a central role in the clearance of xenobiotics and in cancer resistance to chemotherapy. Pairs of spin labels were introduced at residues selected to track the putative inward-facing to outward-facing transition. Our findings illuminate how ATP energy is harnessed in the NBDs in a two-stroke cycle and elucidate the consequent conformational motion that reconfigures the TMD, two critical aspects of Pgp transport mechanism. Along with a fully atomistic model of the outward-facing conformation in membranes, the insight into Pgp conformational dynamics harmonizes mechanistic and structural data into a novel perspective on ATP-coupled transport and reveals mechanistic divergence within the efflux class of ABC transporters.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Biocatálisis , Adenosina Trifosfato/metabolismo , Animales , Electrones , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Marcadores de Spin
4.
Proc Natl Acad Sci U S A ; 117(42): 26245-26253, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020312

RESUMEN

ABCB1 detoxifies cells by exporting diverse xenobiotic compounds, thereby limiting drug disposition and contributing to multidrug resistance in cancer cells. Multiple small-molecule inhibitors and inhibitory antibodies have been developed for therapeutic applications, but the structural basis of their activity is insufficiently understood. We determined cryo-EM structures of nanodisc-reconstituted, human ABCB1 in complex with the Fab fragment of the inhibitory, monoclonal antibody MRK16 and bound to a substrate (the antitumor drug vincristine) or to the potent inhibitors elacridar, tariquidar, or zosuquidar. We found that inhibitors bound in pairs, with one molecule lodged in the central drug-binding pocket and a second extending into a phenylalanine-rich cavity that we termed the "access tunnel." This finding explains how inhibitors can act as substrates at low concentration, but interfere with the early steps of the peristaltic extrusion mechanism at higher concentration. Our structural data will also help the development of more potent and selective ABCB1 inhibitors.


Asunto(s)
Acridinas/metabolismo , Anticuerpos Monoclonales/metabolismo , Microscopía por Crioelectrón/métodos , Tetrahidroisoquinolinas/metabolismo , Vincristina/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos Fitogénicos/metabolismo , Proliferación Celular , Resistencia a Múltiples Medicamentos , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
5.
Biochemistry ; 60(1): 85-94, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33350827

RESUMEN

P-Glycoprotein (P-gp) is an ATP-dependent efflux pump that clears a wide variety of drugs and toxins from cells. P-gp undergoes large-scale structural changes and demonstrates conformational heterogeneity even within a single catalytic or drug-bound state, although the role of heterogeneity remains unclear. P-gp is found in a variety of cell types that vary in lipid composition, which modulates its activity. An understanding of structural or dynamic changes due to the lipid environment is lacking. We aimed to determine the effects of cholesterol in a membrane on the conformational behavior of P-gp in lipid nanodiscs. The presence of cholesterol stimulates ATP hydrolysis and alters lipid order and fluidity. Hydrogen/deuterium exchange mass spectrometry demonstrates that cholesterol in the membrane induces asymmetric, long-range changes in the distributions and exchange kinetics of conformations of the nucleotide-binding domains, correlating the effects of lipid composition on activity with specific changes in the P-gp conformational landscape.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Animales , Hidrólisis , Cinética , Ratones , Conformación Proteica , Dominios Proteicos
6.
Proc Natl Acad Sci U S A ; 115(9): E1973-E1982, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440498

RESUMEN

The multidrug transporter ABCB1 (P-glycoprotein) is an ATP-binding cassette transporter that has a key role in protecting tissues from toxic insult and contributes to multidrug extrusion from cancer cells. Here, we report the near-atomic resolution cryo-EM structure of nucleotide-free ABCB1 trapped by an engineered disulfide cross-link between the nucleotide-binding domains (NBDs) and bound to the antigen-binding fragment of the human-specific inhibitory antibody UIC2 and to the third-generation ABCB1 inhibitor zosuquidar. Our structure reveals the transporter in an occluded conformation with a central, enclosed, inhibitor-binding pocket lined by residues from all transmembrane (TM) helices of ABCB1. The pocket spans almost the entire width of the lipid membrane and is occupied exclusively by two closely interacting zosuquidar molecules. The external, conformational epitope facilitating UIC2 binding is also visualized, providing a basis for its inhibition of substrate efflux. Additional cryo-EM structures suggest concerted movement of TM helices from both halves of the transporters associated with closing the NBD gap, as well as zosuquidar binding. Our results define distinct recognition interfaces of ABCB1 inhibitory agents, which may be exploited for therapeutic purposes.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Anticuerpos/química , Dibenzocicloheptenos/química , Quinolinas/química , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Adenosina Trifosfatasas/química , Animales , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón , Epítopos/química , Células HEK293 , Humanos , Ligandos , Ratones , Conformación Molecular , Mutación , Unión Proteica , Conformación Proteica
7.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008783

RESUMEN

P-Glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette superfamily of transporters, and it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping compounds out of cells. P-gp contributes to a reduction in toxicity, and has broad substrate specificity. It is involved in the failure of many cancer and antiviral chemotherapies due to the phenomenon of multidrug resistance (MDR), in which the membrane transporter removes chemotherapeutic drugs from target cells. Understanding the details of the ligand-P-gp interaction is therefore critical for the development of drugs that can overcome the MDR phenomenon, for the early identification of P-gp substrates that will help us to obtain a more effective prediction of toxicity, and for the subsequent outdesign of substrate properties if needed. In this work, a series of molecular dynamics (MD) simulations of human P-gp (hP-gp) in an explicit membrane-and-water environment were performed to investigate the effects of binding different compounds on the conformational dynamics of P-gp. The results revealed significant differences in the behaviour of P-gp in the presence of active and non-active compounds within the binding pocket, as different patterns of movement were identified that could be correlated with conformational changes leading to the activation of the translocation mechanism. The predicted ligand-P-gp interactions are in good agreement with the available experimental data, as well as the estimation of the binding-free energies of the studied complexes, demonstrating the validity of the results derived from the MD simulations.


Asunto(s)
Simulación de Dinámica Molecular , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Humanos , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Análisis de Componente Principal , Estructura Secundaria de Proteína , Solventes/química , Relación Estructura-Actividad , Termodinámica
8.
Arch Biochem Biophys ; 696: 108675, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33197430

RESUMEN

Multidrug resistance (MDR) caused by overexpressed permeability-glycoprotein (P-gp) in cancer cells is the main barrier for the cure of cancers. P-gp can pump many chemotherapeutic drugs, which is a viable target to overcome P-gp-mediated MDR by efficient inhibitors of P-gp. However, limited understanding of the efflux mechanism by human P-gp hinders the development of efficient inhibitors. Herein, the transport of a P-gp inhibitor, verapamil, by human P-gp has been investigated using targeted molecular dynamics simulations and energetics analysis based on our previous research on the transport of a drug (doxorubicin). The energetics analysis identifies that the driving forces for the transport of verapamil are electrostatic repulsions contributed by the positively charged residues in the initial stage and then hydrophobic interactions contributed by the important residues in the later stage. This scenario is generally consistent with that in the transport of doxorubicin. However, the positively charged residues and the important residues for the transport of verapamil are incompletely consistent with the relative residues for the transport of doxorubicin. Moreover, the binding free energy contributions of the positively charged residues for the transport of verapamil are generally higher than them for the transport of doxorubicin, while the important residues constitute significantly different binding free energy compositions in the transports of the two substrates. Consequently, the pathway for the transport of verapamil is identified, which shares only two residues (F336 and M986) with the pathway of doxorubicin. This may imply the weak competitiveness of verapamil with doxorubicin in the substrate efflux. Taken together, this work provided new insights into the efflux mechanisms by human P-gp and would be beneficial in the design of potent P-gp inhibitors.


Asunto(s)
Verapamilo/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Aminoácidos/química , Transporte Biológico , Doxorrubicina/química , Doxorrubicina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Unión Proteica , Electricidad Estática , Termodinámica , Verapamilo/química
9.
Mol Pharm ; 17(7): 2398-2410, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32496785

RESUMEN

ATP-binding cassette (ABC)-transporters protect tissues by pumping their substrates out of the cells in many physiological barriers, such as the blood-brain barrier, intestine, liver, and kidney. These substrates include various endogenous metabolites, but, in addition, ABC transporters recognize a wide range of compounds, therefore affecting the disposition and elimination of clinically used drugs and their metabolites. Although numerous ABC-transporter inhibitors are known, the underlying mechanism of inhibition is not well characterized. The aim of this study is to deepen our understanding of transporter inhibition by studying the molecular basis of ligand recognition. In the current work, we compared the effect of 44 compounds on the active transport mediated by three ABC transporters: breast cancer resistance protein (BCRP and ABCG2), multidrug-resistance associated protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight compounds were strong inhibitors of all three transporters, while the activity of 36 compounds was transporter-specific. Of the tested compounds, 39, 25, and 11 were considered as strong inhibitors, while 1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp, respectively. In addition, six transport-enhancing stimulators were observed for P-gp. In order to understand the observed selectivity, we compared the surface properties of binding cavities in the transporters and performed structure-activity analysis and computational docking of the compounds to known binding sites in the transmembrane domains and nucleotide-binding domains. Based on the results, the studied compounds are more likely to interact with the transmembrane domain than the nucleotide-binding domain. Additionally, the surface properties of the substrate binding site in the transmembrane domains of the three transporters were in line with the observed selectivity. Because of the high activity toward BCRP, we lacked the dynamic range needed to draw conclusions on favorable interactions; however, we identified amino acids in both P-gp and MRP2 that appear to be important for ligand recognition.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/metabolismo , Dominio Catalítico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Antineoplásicos/farmacología , Transporte Biológico Activo/efectos de los fármacos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química
10.
Bioorg Med Chem ; 28(12): 115553, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32503690

RESUMEN

Conflicts with the notion that specific substrate interactions were required in the control of reaction path in active transport systems, P-glycoprotein showed extraordinarily low specificity. Therefore, overexpression P-glycoprotein excluded a large number of anticancer agents from cancer cells, and multidrug resistance happened. Several kinds of bisbenzylisoqunoline alkaloids were reported to modulate P-glycoprotein function and reverse drug resistance. In order to provide more information for their structure activity relationship on P-glycoprotein function, the effects of tetrandrine, isotetrandrine, fangchinoline, berbamine, dauricine, cepharanthine and armepavine on the P-glycoprotein function were compared by using daunorubicin-resistant leukemia MOLT-4 cells in the present study. Among them, tetrandrine exhibited the strongest P-glycoprotein inhibitory effect, followed with fangchinoline and cepharanthine, and subsequently with berbamine or isotetrandrine. However, dauricine and armepavine showed little influence on the P-glycoprotein function. These data revealed that the 18-membered ring of the bisbenzylisoquinoline alkaloids maintained the P-glycoprotein inhibitory activity, suggesting that double isoquinoline units connected by two oxygen bridges were indispensable. Moreover, stereo-configuration of bisbenzylisoquinoline 3D structures determined their inhibitory activities, which provided a new viewpoint to recognize the specificity of binding pocket in P-glycoprotein. Our data also indicated that 3D chemical structure was more sensitive than 2D to predict the P-glycoprotein inhibitory-potencies of bisbenzylisoqunoline alkaloids.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Alcaloides/metabolismo , Bencilisoquinolinas/química , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Alcaloides/química , Alcaloides/farmacología , Bencilisoquinolinas/metabolismo , Bencilisoquinolinas/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Conformación Molecular , Relación Estructura-Actividad
11.
Phys Chem Chem Phys ; 22(21): 12228-12238, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32432253

RESUMEN

Light activated photosensitizers generate reactive oxygen species (ROS) that interfere with cellular components and can induce cell death, e.g., in photodynamic therapy (PDT). The effect of cellular components and especially proteins on the photochemistry and photophysics of the sensitizers is a key aspect in drug design and the correlating cellular response with the generation of specific ROS species. Here, we show the complex range of effects of binding of photosensitizer to a multidrug resistance protein, produced by bacteria, on the formers reactivity. We show that recruitment of drug like molecules by LmrR (Lactococcal multidrug resistance Regulator) modifies their photophysical properties and their capacity to induce oxidative stress especially in 1O2 generation, including rose bengal (RB), protoporphyrin IX (PpIX), bodipy, eosin Y (EY), riboflavin (RBF), and rhodamine 6G (Rh6G). The range of neutral and charged dyes with different exited redox potentials, are broadly representative of the dyes used in PDT.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Fármacos Fotosensibilizantes/química , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Colorantes/metabolismo , Colorantes/efectos de la radiación , Lactococcus/química , Luz , Mutación , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/efectos de la radiación , Unión Proteica , Oxígeno Singlete/química
12.
Biosci Biotechnol Biochem ; 84(7): 1373-1383, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32163007

RESUMEN

PENICILLIUM MARNEFFEI: is a thermally dimorphic fungus that causes penicilliosis, and become the third-most-common opportunistic fungal infection in immunocompromised patients in Southeast Asia. Azoles and amphotericin B have been introduced for the treatment, however, it is important to investigate possible mechanisms of azole resistance for future treatment failure. We identified 177 putative MFS transporters and classified into 17 subfamilies. Among those, members of the Drug:H+ antiporter 1 subfamily are known to confer resistance to antifungals. Out of 39 paralogs, three (encoded by PmMDR1, PmMDR2, and PmMDR3) were heterologously overexpressed in S. cerevisiae AD∆ conferred resistance to various drugs and compounds including azoles, albeit to different degrees. PmMDR1-expressing strain showed resistance to the broadest range of drugs, followed by the PmMDR3, and PmMDR2 conferred weak resistance to a limited range of drugs. We conclude that PmMDR1 and PmMDR3, may be able to serve as multidrug efflux pumps.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Anfotericina B/farmacología , Antifúngicos/farmacología , Micosis/metabolismo , Talaromyces/metabolismo , Triazoles/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Anfotericina B/uso terapéutico , Asia Sudoriental/epidemiología , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Huésped Inmunocomprometido , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/epidemiología , Micosis/microbiología , Filogenia , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Talaromyces/efectos de los fármacos , Transcriptoma , Triazoles/uso terapéutico
13.
Biochem J ; 476(24): 3737-3750, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31774117

RESUMEN

P-glycoprotein (P-gp), an ATP-binding cassette transporter associated with multidrug resistance in cancer cells, is capable of effluxing a number of xenobiotics as well as anticancer drugs. The transport of molecules through the transmembrane (TM) region of P-gp involves orchestrated conformational changes between inward-open and inward-closed forms, the details of which are still being worked out. Here, we assessed how the binding of transport substrates or modulators in the TM region and the binding of ATP to the nucleotide-binding domains (NBDs) affect the thermostability of P-gp in a membrane environment. P-gp stability after exposure at high temperatures (37-80°C) was assessed by measuring ATPase activity and loss of monomeric P-gp. Our results show that P-gp is significantly thermostabilized (>22°C higher IT50) by the binding of ATP under non-hydrolyzing conditions (in the absence of Mg2+). By using an ATP-binding-deficient mutant (Y401A) and a hydrolysis-deficient mutant (E556Q/E1201Q), we show that thermostabilization of P-gp requires binding of ATP to both NBDs and their dimerization. Additionally, we found that transport substrates do not affect the thermal stability of P-gp either in the absence or presence of ATP; in contrast, inhibitors of P-gp including tariquidar and zosuquidar prevent ATP-dependent thermostabilization in a concentration-dependent manner, by stabilizing the inward-open conformation. Altogether, our data suggest that modulators, which bind in the TM regions, inhibit ATP hydrolysis and drug transport by preventing the ATP-dependent dimerization of the NBDs of P-gp.


Asunto(s)
Adenosina Trifosfato/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Acridinas/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Dibenzocicloheptenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Insectos , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Quinolinas/farmacología , Temperatura , Tetrahidroisoquinolinas/farmacología , Verapamilo/farmacología
14.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092870

RESUMEN

The overexpressing ABCB1 transporter is one of the key factors leading to multidrug resistance (MDR). Thus, many ABCB1 inhibitors have been found to be able to overcome ABCB1-mediated MDR. However, some inhibitors also work as a substrate of ABCB1, which indicates that in order to achieve an effective reversal dosage, a higher concentration is needed to overcome the pumped function of ABCB1, which may concurrently increase the toxicity. WYE-354 is an effective and specific mTOR (mammalian target of rapamycin) inhibitor, which recently has been reported to reverse ABCB1-mediated MDR. In the current study, 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out to determine the cell viability and reversal effect of WYE-354 in parental and drug-resistant cells. Drug accumulation was performed to examine the effect of WYE-354 on the cellular accumulation of chemotherapeutic drugs. The ATPase (adenosine triphosphatase) activity of the ABCB1 transporter in the presence or absence of WYE-354 was conducted in order to determine the impact of WYE-354 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate the protein molecules related to MDR. In addition, the interaction between the WYE-354 and ABCB1 transporter was investigated via in silico analysis. We demonstrated that WYE-354 is a substrate of ABCB1, that the overexpression of the ABCB1 transporter decreases the efficacy of WYE-354, and that the resistant WYE-354 can be reversed by an ABCB1 inhibitor at a pharmacological achievable concentration. Furthermore, WYE-354 increased the intracellular accumulation of paclitaxel in the ABCB1-mediated MDR cell line, without affecting the corresponding parental cell line, which indicated that WYE-354 could compete with other chemotherapeutic drugs for the ABCB1 transporter substrate binding site. In addition, WYE-354 received a high score in the docking analysis, indicating a strong interaction between WYE-354 and the ABCB1 transporter. The results of the ATPase analysis showed that WYE-354 could stimulate ABCB1 ATPase activity. Treatment with WYE-354 did not affect the protein expression or subcellular localization of the ABCB1. This study provides evidence that WYE-354 is a substrate of the ABCB1 transporter, implicating that WYE-354 should be avoided for use in ABCB1-mediated MDR cancer.


Asunto(s)
Purinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Doxorrubicina/química , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Paclitaxel/química , Paclitaxel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Purinas/química , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Verapamilo/farmacología
15.
Molecules ; 25(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403277

RESUMEN

Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure-activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38-1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Imidazoles/química , Imidazoles/farmacología , Linfoma de Células T/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/genética , Humanos , Imidazoles/síntesis química , Técnicas In Vitro , Concentración 50 Inhibidora , Linfoma de Células T/enzimología , Linfoma de Células T/genética , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Morfolinas/química , Rodamina 123/metabolismo , Relación Estructura-Actividad , Verapamilo/farmacología
16.
Mol Pharmacol ; 96(2): 180-192, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31127007

RESUMEN

P-glycoprotein (P-gp) is a multidrug transporter that is expressed on the luminal surface of epithelial cells in the kidney, intestine, bile-canalicular membrane in the liver, blood-brain barrier, and adrenal gland. This transporter uses energy of ATP hydrolysis to efflux from cells a variety of structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs. In this regard, understanding the interaction with P-gp of drug entities in development is important and highly recommended in current US Food and Drug Administration guidelines. Here we tested the P-gp interaction of some A3 adenosine receptor agonists that are being developed for the treatment of chronic diseases, including rheumatoid arthritis, psoriasis, chronic pain, and hepatocellular carcinoma. Biochemical assays of the ATPase activity of P-gp and by photolabeling P-gp with its transport substrate [125I]-iodoarylazidoprazosin led to the identification of rigidified (N)-methanocarba nucleosides (i.e., compound 3 as a stimulator and compound 8 as a partial inhibitor of P-gp ATPase activity). Compound 8 significantly inhibited boron-dipyrromethene (BODIPY)-verapamil transport mediated by human P-gp (IC50 2.4 ± 0.6 µM); however, the BODIPY-conjugated derivative of 8 (compound 24) was not transported by P-gp. In silico docking of compounds 3 and 8 was performed using the recently solved atomic structure of paclitaxel (Taxol)-bound human P-gp. Molecular modeling studies revealed that both compounds 3 and 8 bind in the same region of the drug-binding pocket as Taxol. Thus, this study indicates that nucleoside derivatives can exhibit varied modulatory effects on P-gp activity, depending on structural functionalization. SIGNIFICANCE STATEMENT: Certain A3 adenosine receptor agonists are being developed for the treatment of chronic diseases. The goal of this study was to test the interaction of these agonists with the human multidrug resistance-linked transporter P-glycoprotein (P-gp). ATPase and photolabeling assays demonstrated that compounds with rigidified (N)-methanocarba nucleosides inhibit the activity of P-gp; however, a fluorescent derivative of one of the compounds was not transported by P-gp. Furthermore, molecular docking studies revealed that the binding site for these compounds overlaps with the site for paclitaxel in the drug-binding pocket. These results suggest that nucleoside derivatives, depending on structural functionalization, can modulate the function of P-gp.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Agonistas del Receptor de Adenosina A3/química , Azidas/metabolismo , Sitios de Unión , Células HeLa , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Paclitaxel/química , Paclitaxel/farmacología , Prazosina/análogos & derivados , Prazosina/metabolismo , Relación Estructura-Actividad , Verapamilo/química , Verapamilo/farmacología
17.
J Biol Chem ; 293(17): 6297-6307, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29511086

RESUMEN

P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.


Asunto(s)
Lípidos/química , Micelas , Nanoestructuras/química , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Humanos , Cinética , Conformación Proteica , Vanadatos/química
18.
Biol Chem ; 400(10): 1245-1259, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30730833

RESUMEN

Several ABC transporters of the human liver are responsible for the secretion of bile salts, lipids and cholesterol. Their interplay protects the biliary tree from the harsh detergent activity of bile salts. Among these transporters, ABCB4 is essential for the translocation of phosphatidylcholine (PC) lipids from the inner to the outer leaflet of the canalicular membrane of hepatocytes. ABCB4 deficiency can result in altered PC to bile salt ratios, which led to intrahepatic cholestasis of pregnancy, low phospholipid associated cholelithiasis, drug induced liver injury or even progressive familial intrahepatic cholestasis type 3. Although PC lipids only account for 30-40% of the lipids in the canalicular membrane, 95% of all phospholipids in bile are PC lipids. We discuss this discrepancy in the light of PC synthesis and bile salts favoring certain lipids. Nevertheless, the in vivo extraction of PC lipids from the outer leaflet of the canalicular membrane by bile salts should be considered as a separate step in bile formation. Therefore, methods to characterize disease causing ABCB4 mutations should be considered carefully, but such an analysis represents a crucial point in understanding the currently unknown transport mechanism of this ABC transporter.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Transporte Biológico , Colestasis Intrahepática/metabolismo , Hepatocitos/metabolismo , Humanos , Mutación , Fosfatidilcolinas/metabolismo , Relación Estructura-Actividad
19.
Toxicol Appl Pharmacol ; 369: 49-59, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790579

RESUMEN

Flavonoids are a class of polyphenol antioxygen, despite various known biological activities and therapeutic potential, scattered but not much is known about their interactions with drug transporters. P-glycoprotein (P-gp) as a cellular defense mechanism by effluxing its substrates has been widely investigated. The aim of this study was to investigate the inhibitory effects of 75 flavonoids on P-gp in vitro and in vivo and to illuminate the structure-activity relationships of flavonoids with P-gp. Five flavonoids, including tangeretin, sinensetin, isosinensetin, sciadopitysin and oroxylin A exhibited significant inhibition on P-gp in MDR1-MDCKIIcells, which reduced the P-gp-mediated efflux of paraquat and taxol and consequently increased their cell toxicity. In addition, co-administration of digoxin with five flavonoids increased the AUC0-t of digoxin in different extents in rats, from 19.84% to 81.51%. Molecular docking assays elucidated the inhibitory effect of flavonoids might be related to Pi interactions, but not hydrogen bonds. The pharmacophore model suggested the hydrophobic groups in B benzene ring may play a vital role in the potency of flavonoids inhibition on P-gp. Taken together, our findings would provide the basis for a reliable assessment of the potential risks of flavonoid-containing food/herb-drug interactions in humans.


Asunto(s)
Flavonoides/toxicidad , Interacciones de Hierba-Droga , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Digoxina/farmacocinética , Digoxina/toxicidad , Perros , Relación Dosis-Respuesta a Droga , Flavonoides/química , Flavonoides/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Masculino , Simulación del Acoplamiento Molecular , Paclitaxel/metabolismo , Paclitaxel/farmacología , Paraquat/metabolismo , Paraquat/toxicidad , Conformación Proteica , Ratas Sprague-Dawley , Relación Estructura-Actividad
20.
Protein Expr Purif ; 159: 60-68, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30851394

RESUMEN

Human P-glycoprotein (P-gp) is an ATP-binding cassette transporter that has been implicated in altering the pharmacokinetics of anticancer drugs in normal tissues and development of multidrug resistance in tumor cells via drug efflux. There is still no definitive explanation of the mechanism by which P-gp effluxes drugs. One of the challenges of large-scale purification of membrane transporters is the selection of a suitable detergent for its optimal extraction from cell membranes. In addition, further steps of purification can often lead to inactivation and aggregation, decreasing the yield of purified protein. Here we report the large-scale purification of human P-gp expressed in High-Five insect cells using recombinant baculovirus. The purification strategies we present yield homogeneous functionally active wild type P-gp and its E556Q/E1201Q mutant, which is defective in carrying out ATP hydrolysis. Three detergents (1,2-diheptanoyol-sn-glycero-3-phosphocholine, dodecyl maltoside and n-octyl-ß-d-glucopyranoside) were used to solubilize and purify P-gp from insect cell membranes. P-gp purification was performed first using immobilized metal affinity chromatography, then followed by a second step of either anion exchange chromatography or size exclusion chromatography to yield protein in concentrations of 2-12 mg/mL. Size exclusion chromatography was the preferred method, as it allows separation of monomeric transporters from aggregates. We show that the purified protein, when reconstituted in proteoliposomes and nanodiscs, exhibits both basal and substrate or inhibitor-modulated ATPase activity. This report thus provides a convenient and robust method to obtain large amounts of active homogeneously purified human P-gp that is suitable for biochemical, biophysical and structural characterization.


Asunto(s)
Extractos Celulares/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Baculoviridae/genética , Cromatografía Liquida , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Glucósidos/química , Humanos , Fosfolípidos/química , Proteolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA