Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Am J Transplant ; 22(10): 2323-2336, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35729702

RESUMEN

The mammalian target of rapamycin (mTOR) pathway is frequently deregulated and has critical roles in cancer progression. mTOR inhibitor has been widely used in several kinds of cancers and is strongly recommended in patients with hepatocellular carcinoma (HCC) after liver transplantation (LT). However, the poor response to mTOR inhibitors due to resistance remains a challenge. Hypoxia-associated resistance limits the therapeutic efficacy of targeted drugs. The present study established models of HCC clinical samples and cell lines resistance to mTOR inhibitor sirolimus and screened out E2F7 as a candidate gene induced by hypoxia and promoting sirolimus resistance. E2F7 suppressed mTOR complex 1 via directly binding to the promoter of the TSC1 gene and stabilizes hypoxia-inducible factor-1α activating its downstream genes, which are responsible for E2F7-dependent mTOR inhibitor resistance. Clinically, low E2F7 expression could be an effective biomarker for recommending patients with HCC for anti-mTOR-based therapies after LT. Targeting E2F7 synergistically inhibited HCC growth with sirolimus in vivo. E2F7 is a promising target to reverse mTOR inhibition resistance. Collectively, our study points to a role for E2F7 in promoting mTOR inhibitor resistance in HCC and emphasizes its potential clinical significance in patients with HCC after LT.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/cirugía , Línea Celular Tumoral , Proliferación Celular , Factor de Transcripción E2F7 , Humanos , Hipoxia/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/cirugía , Inhibidores mTOR , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
2.
J Hepatol ; 76(1): 160-173, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599999

RESUMEN

BACKGROUND & AIMS: An invasive form of intestinal Entamoeba (E.) histolytica infection, which causes amoebic liver abscess, is more common in men than in women. Immunopathological mechanisms are responsible for the more severe outcome in males. Here, we used a mouse model of hepatic amoebiasis to investigate the contribution of hepatic hypoxia-inducible factor (HIF)-1α to T helper 17 (Th17)/regulatory T cell (Treg) responses in the context of the sex-specific outcome of liver damage. METHODS: C57BL/6J mice were infected intrahepatically with E. histolytica trophozoites. HIF-1α expression was determined by qPCR, flow cytometry and immunohistochemistry. Tregs and Th17 cells were analysed by immunohistochemistry and flow cytometry. Finally, male and female hepatocyte-specific Hif1α knockout mice were generated, and the effect of HIF-1α on abscess development, the cytokine milieu, and Th17/Treg differentiation was examined. RESULTS: E. histolytica infection increased hepatic HIF-1α levels, along with the elevated frequencies of hepatic Th17 and Treg cells. While the Th17 cell population was larger in male mice, Tregs characterised by increased expression of Foxp3 in female mice. Male mice displayed increased IL-6 expression, contributing to immunopathology; this increase in IL-6 expression declined upon deletion of hepatic HIF-1α. In both sexes, hepatic deletion of HIF-1α reduced the Th17 cell frequency; however, the percentage of Tregs was reduced in female mice only. CONCLUSIONS: Hepatic HIF-1α modulates the sex-specific outcome of murine E. histolytica infection. Our results suggest that in male mice, Th17 cells can be modulated by hepatic HIF-1α via IL-6, indicating marked involvement in the immunopathology underlying abscess development. Strong expression of Foxp3 by hepatic Tregs from female mice suggests a potent immunosuppressive function, leading to initiation of liver regeneration. LAY SUMMARY: Infection with the parasite Entamoeba histolytica activates immunopathological mechanisms in male mice, which lead to liver abscesses that are larger than those in female mice. In the absence of the protein HIF-1α in hepatocytes, abscess formation is reduced; moreover, the sex difference in abscess size is abolished. These results suggest that HIF-1α modulates the immune response involved in the induction of immunopathology, resulting in differential disease susceptibility in males and females.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Absceso Hepático Amebiano/genética , Células Th17/metabolismo , Animales , Modelos Animales de Enfermedad , Entamoeba/efectos de los fármacos , Entamoeba/patogenicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Absceso Hepático Amebiano/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Células Th17/microbiología
3.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364008

RESUMEN

Prostate cancer (PCa) is the most common malignancy to endanger the health of male genitourinary system. Clinically, paclitaxel (PTX) (C47H51NO14), a diterpene alkaloid, is commonly used as an effective natural antineoplastic drug during the treatment of PCa. However, the mechanism and pathway involved in the function of PTX are poorly understood. In the current study, we employed the CCK-8 assay, revealing that PTX can inhibit the survival and induce the apoptosis of PC3M cells (a human prostate cancer cell line) in a concentration-dependent manner. Reactive oxygen species (ROS), as a metabolic intermediate produced by the mitochondrial respiratory chain, are highly accumulated under the PTX treatment, which results in a sharp decrease of the mitochondrial membrane potential in PC3M cells. Additionally, the migration and invasion of PC3M cells are weakened due to PTX treatment. Further analysis reveals that N-acetylcysteine (NAC), which functions as an antioxidant, not only rescues the decreased mitochondrial membrane potential induced by the abnormal ROS level, but also restores the migration and invasion of PC3M cells. In a subsequent exploration of the detailed mechanism, we found that hypoxia-inducible factor (HIF)-1α works as a downstream gene that can respond to the increased ROS in PC3M cells. Under PTX treatment, the expression levels of HIF-1α mRNA and protein are significantly increased, which stimulate the activation of JNK/caspase-3 signaling and promote the apoptosis of PC3M cells. In summary, we demonstrate that PTX regulates the expression of HIF-1α through increased ROS accumulation, thereby promoting the activation of JNK/caspase-3 pathway to induce the apoptosis of PCa cells. This study provides new insights into the mechanism of antineoplastic action of taxanes and unveils the clinical benefit of the ROS-HIF-1α signaling pathway, which may offer a potential therapeutic target to prevent the development of PCa.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Paclitaxel/farmacología , Caspasa 3/genética , Caspasa 3/farmacología , Apoptosis , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Antineoplásicos/farmacología
4.
Exp Cell Res ; 395(1): 112175, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679233

RESUMEN

Autophagy is a basic catabolic response that eukaryotic cells use to degrade unnecessary or dysfunctional cellular components in an orderly and regulated manner. It plays important roles in maintaining cellular homeostasis, energy homeostasis, response to environmental stimuli, and the development of cancer. In solid tumors, hypoxia induces an increased HIF-1a that activates autophagy. However, the exact mechanism by which induced HIF-1a stimulates autophagy in cancer cells remains elusive. In the present study, we confirmed that ANKRD37 is upregulated in colon cancer tissue. Moreover, the higher expression level of ANKRD37 is related to a poorer survival rate. Using RNA interference, immunoblot, and immunofluorescence, we discovered that in cancer cell line RKO, hypoxia-induced HIF-1a regulates autophagy activity by increasing ANKRD37 level. In addition, intranuclear ANKRD37 played an important role in the regulation of hypoxia-induced autophagy. The translocation of ANKRD37 into cell nuclear is required for promoting cell growth and HIF-1a induced autophagy. These findings provide new insights to understand the hypoxia regulation mechanisms and the role of autophagy in cancer development.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Autofagia/genética , Autofagia/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Interferencia de ARN/efectos de los fármacos , Interferencia de ARN/fisiología , Activación Transcripcional/fisiología
5.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768786

RESUMEN

Intervertebral discs (IVDs) have poor nutrient diffusion, because the nucleus pulposus (NP) lacks direct vascular supply and likely generates adenosine triphosphate by anaerobic glycolysis. Regulation of glycolysis is mediated by hypoxia-inducible factor-1α (HIF-1α), a transcription factor that responds to local oxygen tension. Constitutively active HIF-1α (CA HIF-1α) was created by point mutation and determined the protective role of HIF-1α in IVD degeneration. Under fluoroscopy, rat caudal IVD segments were stabbed by a needle puncture, and pcDNA3- HIF-1α wild-type (WT) or pcDNA3-CA HIF-1α was transfected into NP cell lines. The constitutive activity of CA HIF-1α was analyzed using a luciferase assay after cell lysis. Next, IVD tissue samples were retrieved from five patients with degenerative lumbar spinal stenosis at the time of surgery, and NP cells were cultured. NP cells were transfected with CA HIF-1α, and relevant gene expression was measured. HIF-1α protein levels in the nucleus were significantly higher, and transcriptional activity was 10.3-fold higher in NP cells with CA HIF-1α than in those with HIF-1α WT. Gene transfer of CA HIF-1α into NP cells enhanced the expression of Glut-1, Glut-3, aggrecan, type II collagen, and Sox9. Moreover, CA HIF-1α reduced the apoptosis of NP cells induced by the Fas ligand. The HIF-1α and collagen 2 expression levels were notably increased in the NP cells of the CA HIF-1α transfected segments in histology and immunohistochemistry study. Collectively, these results suggest that activation of HIF-1α signaling pathway may play a protective role against IVD degeneration and could be used as a future therapeutic agent.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Degeneración del Disco Intervertebral/prevención & control , Animales , Línea Celular , Colágeno Tipo II/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Disco Intervertebral/patología , Masculino , Núcleo Pulposo/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
6.
J Cell Physiol ; 234(10): 17392-17404, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30790292

RESUMEN

Microenvironmental hypoxia-mediated drug resistance is responsible for the failure of cancer therapy. To date, the role of the hedgehog pathway in resistance to temozolomide (TMZ) under hypoxia has not been investigated. In this study, we discovered that the increasing hypoxia-inducible factor 1α (HIF-1α) activated the hedgehog pathway in hypoxic microenvironment by promoting autocrine secretion of sonic hedgehog protein (Shh), and then upregulating transfer of Gli1 to the nucleus, finally contributed to TMZ resistance in glioma cells. Oroxylin A (C16H12O5), a bioactive flavonoid, could induce HIF-1α degradation via prolyl-hydroxylases-VHL signaling pathway, resulting in the inactivation of the hedgehog. Besides, oroxylin A increased the expression of Sufu, which is a negative regulator of Gli1. By this mechanism, oroxylin A sensitized TMZ on glioma cells. U251 intracranial transplantation model and GL261 xenograft model were used to confirm the reversal effects of oroxylin A in vivo. In conclusion, our results demonstrated that HIF-1α/hedgehog pathway conferred TMZ resistance under hypoxia, and oroxylin A was capable of increasing the sensitivity of TMZ on glioma cells in vitro and in vivo by inhibiting HIF-1α/hedgehog pathway and depressing the activation of Gli1 directly.


Asunto(s)
Flavonoides/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Hipoxia/metabolismo , Temozolomida/farmacología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Ratas , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
7.
Molecules ; 24(4)2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30791543

RESUMEN

Patients with uncontrolled diabetes are susceptible to implant failure due to impaired bone metabolism. Hypoxia-inducible factor 1α (HIF-1α), a transcription factor that is up-regulated in response to reduced oxygen during bone repair, is known to mediate angiogenesis and osteogenesis. However, its function is inhibited under hyperglycemic conditions in diabetic patients. This study thus evaluates the effects of exogenous HIF-1α on bone formation around implants by applying HIF-1α to diabetic mice and normal mice via a protein transduction domain (PTD)-mediated DNA delivery system. Implants were placed in the both femurs of diabetic and normal mice. HIF-1α and placebo gels were injected to implant sites of the right and left femurs, respectively. We found that bone-to-implant contact (BIC) and bone volume (BV) were significantly greater in the HIF-1α treated group than placebo in diabetic mice (p < 0.05). Bioinformatic analysis showed that diabetic mice had 216 differentially expressed genes (DEGs) and 21 target genes. Among the target genes, NOS2, GPNMB, CCL2, CCL5, CXCL16, and TRIM63 were found to be associated with bone formation. Based on these results, we conclude that local administration of HIF-1α via PTD may boost bone formation around the implant and induce gene expression more favorable to bone formation in diabetic mice.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Implantes Dentales , Diabetes Mellitus Experimental , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Osteogénesis/efectos de los fármacos , Animales , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Osteogénesis/genética , Permeabilidad
9.
Int J Hyperthermia ; 34(3): 276-283, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28659004

RESUMEN

PURPOSE: Mild temperature hyperthermia (MTH) increases blood flow and oxygenation in tumours. On the other hand, high-dose-per-fraction irradiation damages blood vessels, decreases blood flow and increases hypoxia in tumours. The radiation-induced hypoxia in tumours activates hypoxia-inducible factor-1α (HIF-1α) and its target genes, such as vascular endothelial growth factor (VEGF), promoting revascularization and recurrence. In the present study, we examined the hypothesis that MTH inhibits radiation-induced upregulation of HIF-1α and its target genes by increasing tumour oxygenation. MATERIALS AND METHODS: FSaII fibrosarcoma tumours grown subcutaneously in the legs of C3H mice were used. Tumours were irradiated with 15 Gy using a 60Co irradiator or heated at 41 °C for 30 min using an Oncothermia heating unit. Blood perfusion and hypoxia in tumours were assessed with Hoechst 33342 and pimonidazole staining, respectively. Expression levels of HIF-1α and VEGF were determined using immunohistochemical techniques. Apoptosis of tumour cells was quantitated via TUNEL staining and the effects of treatments on tumour growth rate were assessed by measuring tumour diameters. RESULTS: Irradiation of FSaII tumours with a single dose of 15 Gy led to significantly decreased blood perfusion, increased hypoxia and upregulation of HIF-1α and VEGF. On the other hand, MTH at 41 °C for 30 min increased blood perfusion and tumour oxygenation, thereby suppressing radiation-induced HIF-1α and VEGF in tumours, leading to enhanced apoptosis of tumour cells and tumour growth delay. CONCLUSION: MTH enhances the anti-tumour effect of high-dose irradiation, at least partly by inhibiting radiation-induced upregulation of HIF-1α.


Asunto(s)
Hipertermia Inducida/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Neoplasias/radioterapia , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Ratones
10.
Clin Exp Pharmacol Physiol ; 45(10): 1076-1082, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29667230

RESUMEN

Acute kidney injury (AKI) occurs in 5% of hospitalized patients and in 50% of sepsis patients with acute renal dysfunction. However, there have been no safe and effective therapeutic strategies. The hypoxia condition is closely related to renal injury and function under AKI. As hypoxia-inducible factor 1α (HIF-1α) is critical for the cellular response to hypoxia, we investigated the protective effect of HIF-1α in a rat AKI model. We found that HIF-1α injection improved the survival of rat with AKI, and the level of creatinine and blood urea nitrogen (BUN) was also increased. Our data showed that HIF-1α treatment significantly alleviated ischaemic/reperfusion injury to kidney tubules and nephrocytes. We also found the downstream factors, such as EPOR, VEGF, and PHD3, were also upregulated by HIF-1α. Finally, it was observed that HIF-1α treatment also increased the percentage of adult resident progenitor cells (ARPC) in vitro and in vivo. In conclusion, HIF-1α plays a protective role in the ischaemic AKI model through stimulating the proliferation of ARPC, and our study provided a potential therapeutic strategy for AKI.


Asunto(s)
Lesión Renal Aguda/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Daño por Reperfusión/patología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Ratas , Análisis de Supervivencia
11.
Cancer Cell ; 11(4): 335-47, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17418410

RESUMEN

HIF-2alpha promotes von Hippel-Lindau (VHL)-deficient renal clear cell carcinoma (RCC) tumorigenesis, while HIF-1alpha inhibits RCC growth. As HIF-1alpha antagonizes c-Myc function, we hypothesized that HIF-2alpha might enhance c-Myc activity. We demonstrate here that HIF-2alpha promotes cell-cycle progression in hypoxic RCCs and multiple other cell lines. This correlates with enhanced c-Myc promoter binding, transcriptional effects on both activated and repressed target genes, and interactions with Sp1, Miz1, and Max. Finally, HIF-2alpha augments c-Myc transformation of primary mouse embryo fibroblasts (MEFs). Enhanced c-Myc activity likely contributes to HIF-2alpha-mediated neoplastic progression following loss of the VHL tumor suppressor and influences the behavior of hypoxic tumor cells.


Asunto(s)
Hipoxia de la Célula , Proliferación Celular , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/farmacología , Transcripción Genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclo Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Neoplasias del Colon/patología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Ratones , Ratones Noqueados , Células 3T3 NIH/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción Sp1/metabolismo , Transactivadores , Ubiquitina-Proteína Ligasas , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
12.
Eur J Clin Invest ; 44(10): 989-99, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25208310

RESUMEN

BACKGROUND: Cardiovascular patients suffer from reduced blood flow leading to ischaemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia-inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischaemic tissues. Especially, HIF-2α is a novel factor, and only limited information is available about its therapeutic potential. METHODS: Gene transfers with adenoviral HIF-1α and HIF-2α were performed into the mouse heart and rabbit ischaemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and (31)P-magnetic resonance spectroscopy ((31)P-MRS), respectively. RESULTS: HIF-1α and HIF-2α gene transfers increased capillary size up to fivefold in myocardium and ischaemic skeletal muscles. Perfusion in skeletal muscles was increased by fourfold without oedema. Especially, AdHIF-1α enhanced the recovery of ischaemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function. CONCLUSIONS: We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogenesis improved energy recovery after exercise in ischaemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism, which is potentially a very useful feature for cardiovascular gene therapy.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Músculo Esquelético/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Animales , Capilares/fisiología , Vasos Coronarios/fisiología , Expresión Génica/fisiología , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Miembro Posterior/irrigación sanguínea , Isquemia/fisiopatología , Isquemia/terapia , Ratones Endogámicos C57BL , Músculo Esquelético/irrigación sanguínea , Miocardio/metabolismo , Conejos
13.
Adv Biol (Weinh) ; 8(1): e2300292, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37786269

RESUMEN

Type A aortic dissection (AD) is a catastrophic cardiovascular disease. Hypoxia-inducible factor-1α (HIF-1α) and autophagy are reported to be upregulated in the AD specimens. However, the interaction between HIF-1α and autophagy in the pathogenesis of AD remains to be explored. HIF-1α and LC3 levels are evaluated in 10 AD and 10 normal aortic specimens. MDC staining, autophagic vacuoles, and autophagic flux are detected in human aortic smooth muscle cells (HASMCs) under hypoxia treatment. CCK-8, transwell, and wound healing assay are used to identify proliferation and migration under hypoxia treatment. Furthermore, 3-MA is used to inhibit autophagy in hypoxia-treated HASMCs. This study reveals that AD tissues highly express HIF-1α and the LC3. Autophagy is induced under hypoxia in a time-dependent manner, and autophagy is positively related to HIF-1α in HASMCs. Moreover, the proliferation and migration of HASMCs are enhanced by hypoxia, whereas the knockdown of HIF-1α attenuates this effect. Additionally, inhibiting autophagy with 3-MA ameliorates hypoxia-induced proliferation and migration of HASMCs. In summary, the above results indicate that HIF-1α facilitates HASMC proliferation and migration by upregulating autophagy in a hypoxic microenvironment. Thus, inhibition of autophagy may be a novel therapeutic target for the prevention and treatment of AD.


Asunto(s)
Disección Aórtica , Músculo Liso Vascular , Humanos , Autofagia , Proliferación Celular , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología
14.
Biol Trace Elem Res ; 201(5): 2284-2293, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35715716

RESUMEN

Arsenic is a common environmental pollutant that can cause damage to multiple systems and organs in the body. The lungs are particularly sensitive to arsenic exposure, and respiratory disease is thought to be the leading cause of death from arsenic poisoning. Our previous study found that human bronchial epithelial (HBE) cells treated with NaAsO2 exhibited mitochondrial dysfunction accompanied by elevated HIF-1α; however, the molecular mechanism was unclear. The aim of the current study was to confirm the role of HIF-1α in arsenic-induced mitochondrial damage. The results of this study indicated that NaAsO2 treatment induced mitochondrial ultrastructure impairment and depolarization of the mitochondrial membrane potential. Furthermore, NaAsO2 induced a significant decrease in basal respiration, maximal respiration, spare respiratory capacity, ATP (adenosine-triphosphate)-associated mitochondrial respiration and proton leakage in HBE cells (P < 0.05), while promoting an increase in ECAR (extracellular acidification rate) values. To clarify the role of HIF-1α, the effect of HIF-1α siRNA on NaAsO2-induced glycolysis in HBE cells was examined, and the results showed that HIF-1α siRNA reversed the NaAsO2-induced elevation in PKM2 (Tyr105), HIF-1α, GLUT1 and HK2 protein expression and decreased the NaAsO2-mediated glycolysis level, glycolytic capacity and glycolytic reserve. These findings suggest that targeting metabolic dysregulation has significant implications for targeting arsenic-induced lung injury and that HIF-1α is an exciting new therapeutic target for the treatment of arsenic-induced lung injury.


Asunto(s)
Arsénico , Lesión Pulmonar , Humanos , Arsénico/toxicidad , Células Epiteliales , Pulmón , ARN Interferente Pequeño/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología
15.
Oxid Med Cell Longev ; 2023: 4365895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778206

RESUMEN

Testes produce sperms, and gamete generation relies on a proper niche environment. The disruption of hierarchical regulatory homeostasis in Leydig or Sertoli cells may evoke a sterile phenotype in humans. In this study, we recapitulated type 2 diabetes mellitus by using a high-fat diet- (HFD-) fed mouse model to identify the phenotype and potential mechanism of diabetes-induced testicular impairment. At the end of the study, blood glucose levels, testosterone structure, testicular antioxidant capacity, and testosterone level and the expression of hypoxia-inducible factor- (HIF-) 1α, apoptosis-related protein cleaved-caspase3, and autophagy-related proteins such as LC3I/II, p62, and Beclin1 were evaluated. We found that long-term HFD treatment causes the development of diabetes mellitus, implicating increased serum glucose level, cell apoptosis, and testicular atrophy (P < 0.05 vs. Ctrl). Mechanistically, the results showed enhanced expression of HIF-1α in both Sertoli and Leydig cells (P < 0.05 vs. Ctrl). Advanced glycation end products (AGEs) were demonstrated to be a potential factor leading to HIF-1α upregulation in both cell types. In Sertoli cells, high glucose treatment had minor effects on Sertoli cell autophagy. However, AGE treatment stagnated the autophagy flux and escalated cell apoptosis (P < 0.05 vs. Ctrl+Ctrl). In Leydig cells, high glucose treatment was adequate to encumber autophagy induction and enhance oxidative stress. Similarly, AGE treatment facilitated HIF-1α expression and hampered testosterone production (P < 0.05 vs. Ctrl+Ctrl). Overall, these findings highlight the dual effects of diabetes on autophagy regulation in Sertoli and Leydig cells while imposing oxidative stress in both cell types. Furthermore, the upregulation of HIF-1α, which could be triggered by AGE treatment, may negatively affect both cell types. Together, these findings will help us further understand the molecular mechanism of diabetes-induced autophagy dysregulation and testicular impairment, enriching the content of male reproductive biology in diabetic patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Testículo , Ratones , Animales , Humanos , Masculino , Estrés Oxidativo , Autofagia , Testosterona , Glucosa/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología
16.
Vet Comp Oncol ; 21(1): 12-19, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36054173

RESUMEN

The transcription factor hypoxia-inducible factor 1α (HIF-1α) is activated in response to oxygen deficiency, and is expressed in several cancers under intratumoral hypoxic stress that arises during pathogenic processes. Hypoxic stimulation enhanced the growth potential of canine lymphoma cells by activating the HIF-1α signalling pathway in a previously reported study. The aim of this study was to establish a molecular design strategy for a novel hypoxia-targeting therapy for intestinal T-cell lymphoma (ITL) in dogs. We assessed the relationship between immunohistochemistry-based HIF-1α expression and clinical information, including signalment, tumour area, clinical signs, systemic diseases, treatment protocol, follow-up information, chemotherapy response and overall survivals (OS), using 48 tissue samples from dogs with ITL. We investigated the effects of hypoxic stimulation on the biological behaviour of cell lines from three different types of canine ITL. We assessed the effects of evofosfamide (Evo; hypoxia-activated prodrug) on cell lines cultured under hypoxic conditions. Our data showed that treatment response and overall survival might be significantly decreased in dogs with higher HIF-1α expression than in those with lower HIF-1α expression. Hypoxic culture (1% O2 , 72 h) enhanced the invasiveness of cell lines and decreased their sensitivity to CCNU, resulting in hypoxia-dependent aggressive behaviour. Sensitivity to Evo significantly increased in cell lines cultured under hypoxia compared with those cultured under normoxia, which exhibited hypoxia-dependent apoptosis. Additionally, Evo downregulated HIF-1α expression in cell lines cultured under hypoxia, suggesting that Evo might inhibit cell growth by inactivating HIF-1α-dependent cell signalling. Our results revealed the preclinical antitumor activity of Evo and provide a rationale for treatment strategies for dogs with ITL.


Asunto(s)
Enfermedades de los Perros , Linfoma de Células T , Perros , Animales , Hipoxia de la Célula/fisiología , Enfermedades de los Perros/tratamiento farmacológico , Hipoxia/veterinaria , Línea Celular , Linfoma de Células T/veterinaria , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Línea Celular Tumoral
17.
Oxid Med Cell Longev ; 2023: 5157417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819784

RESUMEN

Enriched environment (EE) has been proven to be an effective intervention strategy which can improve neurofunctional recovery following cerebral ischemia/reperfusion (I/R) injury. However, it still needs further investigation for the underlying mechanisms. Recently, it has been shown that ferroptosis played an essential role in the pathophysiological development of ischemic stroke (IS). This study is aimed at investigating whether EE plays a neuroprotective role by attenuating ferroptosis after cerebral I/R injury. We used middle cerebral artery occlusion/reperfusion (MCAO/R) to build a model of cerebral I/R injury. To evaluate the effect of EE on neurological recovery, we used the modified neurological severity score (mNSS) and the Morris water maze (MWM). We used the western blot to detect the protein levels of glutathione peroxidase 4 (GPX4), hypoxia-inducible factor-1α (HIF-1α), and acyl-CoA synthetase long-chain family member 4 (ACSL4). We used the quantitative real-time PCR (qRT-PCR) to measure the mRNA levels of ACSL4 and inflammatory cytokines including tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and interleukin 1 beta (IL-1ß). The occurrence of ferroptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL) assay, diaminobenzidine- (DAB-) enhanced Perls' staining, iron level assays, and malondialdehyde (MDA) level assays. The results verified that EE enhanced functional recovery and attenuated ferroptosis and neuroinflammation after cerebral I/R injury. EE increased the expression of HIF-1α while inhibited the expression of ACSL4. Our research indicated that EE improved functional recovery after cerebral I/R injury through attenuating ferroptosis, and this might be related to its regulation of the neuroinflammation and HIF-1α-ACSL4 pathway.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Daño por Reperfusión , Humanos , Isquemia Encefálica/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Infarto de la Arteria Cerebral Media , Enfermedades Neuroinflamatorias , Daño por Reperfusión/metabolismo , Coenzima A Ligasas/metabolismo
18.
Biol Trace Elem Res ; 201(11): 5230-5241, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36710293

RESUMEN

Fluorosis can induce neurotoxicity. Sodium butyrate (SB), a histone deacetylase inhibitor, has important research potential in correcting glucose metabolism disorders and is widely used in a variety of neurological diseases and metabolic diseases, but it is not yet known whether it plays a role in combating fluoride-induced neurotoxicity. This study aims to evaluate the effect of SB on fluoride neurotoxicity and the possible associated mechanisms. The results of HE staining and Morris water maze showed that, in mice exposed to 100 mg/L fluoride for 3 months, the hippocampal cells arranged in loosely with large cell gaps and diminished in number. One thousand milligram per kilogram per day SB treatment improved fluoride-induced neuronal cell damage and spatial learning memory impairment. Western blot results showed that the abundance of malate dehydrogenase 2 (MDH2) and pyruvate dehydrogenase (PDH) in the hippocampus of fluorosis mice was increased, the abundance of pyruvate kinase M (PKM), lactate dehydrogenase (LDH), hexokinase (HK), phosphatidylinositol 3-kinase (PI3K), phosphorylated Akt (P-AKT), and hypoxia-inducible factor 1α (HIF-1α) was inhibited, and the content of lactate and ATP was decreased. SB treatment reversed the decreased glycolysis in the hippocampus of fluorosis mice. These results suggested that SB could ameliorate fluorosis-induced neurotoxicity, which might be linked with its function in regulating glycolysis as well as inhibition of the PI3K/AKT/HIF-1α pathway. Sodium butyrate ameliorates fluorosis-induced neurotoxicity by regulating hippocampal glycolysis in vivo (created with MedPeer (www.medpeer.cn)).


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Butírico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fluoruros/farmacología , Glucólisis , Fosfatidilinositol 3-Quinasa/metabolismo , Ácido Láctico/metabolismo , Hipocampo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología
19.
Proc Natl Acad Sci U S A ; 106(48): 20399-404, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19948968

RESUMEN

Ischemia induces the production of angiogenic cytokines and the homing of bone-marrow-derived angiogenic cells (BMDACs), but these adaptive responses become impaired with aging because of reduced expression of hypoxia-inducible factor (HIF)-1alpha. In this study, we analyzed the effect of augmenting HIF-1alpha levels in ischemic limb by intramuscular injection of AdCA5, an adenovirus encoding a constitutively active form of HIF-1alpha, and intravenous administration of BMDACs that were cultured in the presence of the prolyl-4-hydroxylase inhibitor dimethyloxalylglycine (DMOG) to induce HIF-1 expression. The combined therapy increased perfusion, motor function, and limb salvage in old mice subjected to femoral artery ligation. Homing of BMDACs to the ischemic limb was dramatically enhanced by intramuscular AdCA5 administration. DMOG treatment of BMDACs increased cell surface expression of beta(2) integrins, which mediated increased adherence of BMDACs to endothelial cells. The effect of DMOG was abolished by coadministration of the HIF-1 inhibitor digoxin or by preincubation with a beta(2) integrin-blocking antibody. Transduction of BMDACs with lentivirus LvCA5 induced effects similar to DMOG treatment. Thus, HIF-1alpha gene therapy increases homing of BMDACs to ischemic muscle, whereas HIF-1 induction in BMDACs enhances their adhesion to vascular endothelium, leading to synergistic effects of combined therapy on tissue perfusion.


Asunto(s)
Terapia Genética/métodos , Miembro Posterior/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Isquemia/terapia , Adenoviridae , Factores de Edad , Aminoácidos Dicarboxílicos/farmacología , Inductores de la Angiogénesis/metabolismo , Animales , Trasplante de Médula Ósea , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Arteria Femoral/cirugía , Citometría de Flujo , Subunidad alfa del Factor 1 Inducible por Hipoxia/administración & dosificación , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inyecciones Intramusculares , Ligadura , Ratones , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Biomed Nanotechnol ; 18(1): 112-119, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35180904

RESUMEN

Bone marrow mesenchymal stem cells (BMSC) have the ability to multi polarize with multiple tropisms and participate in tissue remodeling. This study assessed the effect of titanium dioxide nanotubes with different diameters on ossification of BMSC cells and HIF-1α expression in BMSC ossification. Titanium dioxide nanotubes with different diameters were prepared and then the following groups were set according to the size of pressure; Ti group, NT10 group, NT30 group, and NT60 group. Analysis of cell morphology was done by fluorescence microscope, while adhesion and proliferation were assessed by MTT assay. Moreover, ALP activity, collagen secretion and outer matrix mineralization and expression of HIF-1α, VEGF, and TWIST were assessed by RT-PCR and Western blot. The P3 generation of BMSC cells was successfully obtained. Three types of nanotubes were arranged regularly and contact angle showed NT60Ti>NT30>NT60 (P < 0.05). Cells from NT30 and N60 groups showed obvious expansion with pseudopodia and pseudo plates of cells. Cell adhesion showed changes in sizes of NT10>Ti>NT30>NT66. NT60 group showed lower cell proliferation and higher ALP activity and collagen secretion than the other groups. NT30 and NT60 group presented higher mineralization level, larger diameter, and higher degree of promotion. The NT30 group presented lowest content of HIF-1α (0.12 ± 0.03), VEGF (0.013 ± 0.004), and TWIST (0.014 ± 0.003). Inoculation of BMSCs on titanium dioxide nanotubes of different diameters under cyclical tensile stress environment can promote growth of BMSC cells in a diameter-dependent manner.


Asunto(s)
Células Madre Mesenquimatosas , Nanotubos , Células de la Médula Ósea/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Osteogénesis , Titanio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA