Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.885
Filtrar
1.
Genes Cells ; 29(10): 889-901, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39138929

RESUMEN

Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.


Asunto(s)
Diferenciación Celular , Megacariocitos , Respuesta de Proteína Desplegada , Humanos , Megacariocitos/metabolismo , Megacariocitos/citología , Estrés del Retículo Endoplásmico , Apoptosis , Tapsigargina/farmacología , Línea Celular , Acetato de Tetradecanoilforbol/farmacología
2.
Mol Cell Proteomics ; 22(9): 100630, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562535

RESUMEN

Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/metabolismo , Tapsigargina/farmacología , Proteómica/métodos
3.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34981808

RESUMEN

High-density lipoproteins (HDLs) prevent cell death induced by a variety of cytotoxic drugs. The underlying mechanisms are however still poorly understood. Here, we present evidence that HDLs efficiently protect cells against thapsigargin (TG), a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor, by extracting the drug from cells. Drug efflux could also be triggered to some extent by low-density lipoproteins and serum. HDLs did not reverse the non-lethal mild ER stress response induced by low TG concentrations or by SERCA knockdown, but HDLs inhibited the toxic SERCA-independent effects mediated by high TG concentrations. HDLs could extract other lipophilic compounds, but not hydrophilic substances. This work shows that HDLs utilize their capacity of loading themselves with lipophilic compounds, akin to their ability to extract cellular cholesterol, to reduce the cell content of hydrophobic drugs. This can be beneficial if lipophilic xenobiotics are toxic but may be detrimental to the therapeutic benefit of lipophilic drugs such as glibenclamide.


Asunto(s)
Lipoproteínas HDL , Preparaciones Farmacéuticas , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Tapsigargina/farmacología
4.
Am J Physiol Heart Circ Physiol ; 327(1): H1-H11, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700493

RESUMEN

Although the unfolded protein response (UPR) contributes to survival by removing misfolded proteins, endoplasmic reticulum (ER) stress also activates proapoptotic pathways. Changed sensitivity to normal developmental stimuli may underlie observed cardiomyocyte apoptosis in the healthy perinatal heart. We determined in vitro sensitivity to thapsigargin in sheep cardiomyocytes from four perinatal ages. In utero cardiac activation of ER stress and apoptotic pathways was determined at these same ages. Thapsigargin-induced phosphorylation of eukaryotic initiation factor 2 (EIF2A) was decreased by 72% between 135 and 143 dGA (P = 0.0096) and remained low at 1 dPN (P = 0.0080). Conversely, thapsigargin-induced caspase cleavage was highest around the time of birth: cleaved caspase 3 was highest at 1 dPN (3.8-fold vs. 135 dGA, P = 0.0380; 7.8-fold vs. 5 dPN, P = 0.0118), cleaved caspase 7 and cleaved caspase 12 both increased between 135 and 143 dGA (25-fold and 6.9-fold respectively, both P < 0.0001) and remained elevated at 1 dPN. Induced apoptosis, measured by TdT-mediated dUTP nick-end labeling (TUNEL) assay, was highest around the time of birth (P < 0.0001). There were changes in myocardial ER stress pathway components in utero. Glucose (78 kDa)-regulated protein (GRP78) protein levels were high in the fetus and declined after birth (P < 0.0001). EIF2A phosphorylation was profoundly depressed at 1 dPN (vs. 143 dGA, P = 0.0113). In conclusion, there is dynamic regulation of ER proteostasis, ER stress, and apoptosis cascade in the perinatal heart. Apoptotic signaling is more readily activated in fetal cardiomyocytes near birth, leading to widespread caspase cleavage in the newborn heart. These pathways are important for the regulation of normal maturation in the healthy perinatal heart.NEW & NOTEWORTHY Cardiomyocyte apoptosis occurs even in the healthy, normally developing perinatal myocardium. As cardiomyocyte number is a critical contributor to heart health, the sensitivity of cardiomyocytes to endoplasmic reticulum stress leading to apoptosis is an important consideration. This study suggests that the heart has less robust protective mechanisms in response to endoplasmic reticulum stress immediately before and after birth, and that more cardiomyocyte death can be induced by stress in this period.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Miocitos Cardíacos , Tapsigargina , Animales , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ovinos , Tapsigargina/farmacología , Femenino , Factor 2 Eucariótico de Iniciación/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fosforilación , Chaperón BiP del Retículo Endoplásmico , Embarazo , Respuesta de Proteína Desplegada , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos
5.
Exp Eye Res ; 247: 110029, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127237

RESUMEN

Dysregulation of calcium homeostasis can precipitate a cascade of pathological events that lead to tissue damage and cell death. Dynasore is a small molecule that inhibits endocytosis by targeting classic dynamins. In a previous study, we showed that dynasore can protect human corneal epithelial cells from damage due to tert-butyl hydroperoxide (tBHP) exposure by restoring cellular calcium (Ca2+) homeostasis. Here we report results of a follow-up study aimed at identifying the source of the damaging Ca2+. Store-operated Ca2+ entry (SOCE) is a cellular mechanism to restore intracellular calcium stores from the extracellular milieu. We found that dynasore effectively blocks SOCE in cells treated with thapsigargin (TG), a small molecule that inhibits pumping of Ca2+ into the endoplasmic reticulum (ER). Unlike dynasore however, SOCE inhibitor YM-58483 did not interfere with the cytosolic Ca2+ overload caused by tBHP exposure. We also found that dynasore effectively blocks Ca2+ release from internal sources. The inefficacy of inhibitors of ER Ca2+ channels suggested that this compartment was not the source of the Ca2+ surge caused by tBHP exposure. However, using a Ca2+-measuring organelle-entrapped protein indicator (CEPIA) reporter targeted to mitochondria, we found that dynasore can block mitochondrial Ca2+ release due to tBHP exposure. Our results suggest that dynasore exerts multiple effects on cellular Ca2+ homeostasis, with inhibition of mitochondrial Ca2+ release playing a key role in protection of corneal epithelial cells against oxidative stress due to tBHP exposure.


Asunto(s)
Calcio , Epitelio Corneal , Hidrazonas , Mitocondrias , Humanos , Epitelio Corneal/metabolismo , Epitelio Corneal/efectos de los fármacos , Calcio/metabolismo , Mitocondrias/metabolismo , Hidrazonas/farmacología , Retículo Endoplásmico/metabolismo , Tapsigargina/farmacología , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Células Cultivadas , terc-Butilhidroperóxido/farmacología , Homeostasis/fisiología
6.
J Exp Biol ; 227(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39206669

RESUMEN

Despite its prominent role as an intracellular messenger in all organisms, cytosolic free calcium ([Ca2+]i) has never been quantified in corals or cnidarians in general. Ratiometric calcium dyes and cell imaging have been key methods in successful research on [Ca2+]i in model systems, and could be applied to corals. Here, we developed a procedure to quantify [Ca2+]i in isolated cells from the model coral species Stylophora pistillata using Indo-1 and confocal microscopy. We quantified [Ca2+]i in coral cells with and without intracellular dinoflagellate symbionts, and verified our procedure on cultured mammalian cells. We then used our procedure to measure changes in [Ca2+]i in coral cells exposed to a classic inhibitor of [Ca2+]i regulation, thapsigargin, and also used it to record elevations in [Ca2+]i in coral cells undergoing apoptosis. Our procedure paves the way for future studies into intracellular calcium in corals and other cnidarians.


Asunto(s)
Antozoos , Calcio , Citosol , Microscopía Confocal , Animales , Antozoos/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Dinoflagelados/metabolismo , Tapsigargina/farmacología
7.
Vet Res ; 55(1): 97, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095890

RESUMEN

Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.


Asunto(s)
Antivirales , Gastroenteritis Porcina Transmisible , Tapsigargina , Virus de la Gastroenteritis Transmisible , Animales , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Virus de la Gastroenteritis Transmisible/fisiología , Porcinos , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Gastroenteritis Porcina Transmisible/virología , Antivirales/farmacología , Tapsigargina/farmacología , Línea Celular , Replicación Viral/efectos de los fármacos
8.
Mol Cell ; 64(4): 746-759, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863227

RESUMEN

Excitation-transcription coupling, linking stimulation at the cell surface to changes in nuclear gene expression, is conserved throughout eukaryotes. How closely related coexpressed transcription factors are differentially activated remains unclear. Here, we show that two Ca2+-dependent transcription factor isoforms, NFAT1 and NFAT4, require distinct sub-cellular InsP3 and Ca2+ signals for physiologically sustained activation. NFAT1 is stimulated by sub-plasmalemmal Ca2+ microdomains, whereas NFAT4 additionally requires Ca2+ mobilization from the inner nuclear envelope by nuclear InsP3 receptors. NFAT1 is rephosphorylated (deactivated) more slowly than NFAT4 in both cytoplasm and nucleus, enabling a more prolonged activation phase. Oscillations in cytoplasmic Ca2+, long considered the physiological form of Ca2+ signaling, play no role in activating either NFAT protein. Instead, effective sustained physiological activation of NFAT4 is tightly linked to oscillations in nuclear Ca2+. Our results show how gene expression can be controlled by coincident yet geographically distinct Ca2+ signals, generated by a freely diffusible InsP3 message.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Fosfatos de Inositol/metabolismo , Factores de Transcripción NFATC/genética , Proteínas Recombinantes de Fusión/genética , Animales , Basófilos/citología , Basófilos/efectos de los fármacos , Basófilos/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Línea Celular , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Leucotrieno C4/farmacología , Factores de Transcripción NFATC/metabolismo , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Tapsigargina/farmacología , Transcripción Genética
9.
PLoS Genet ; 17(2): e1009066, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571185

RESUMEN

Intracellular Ca2+ level is under strict regulation through calcium channels and storage pools including the endoplasmic reticulum (ER). Mutations in certain ion channel subunits, which cause mis-regulated Ca2+ influx, induce the excitotoxic necrosis of neurons. In the nematode Caenorhabditis elegans, dominant mutations in the DEG/ENaC sodium channel subunit MEC-4 induce six mechanosensory (touch) neurons to undergo excitotoxic necrosis. These necrotic neurons are subsequently engulfed and digested by neighboring hypodermal cells. We previously reported that necrotic touch neurons actively expose phosphatidylserine (PS), an "eat-me" signal, to attract engulfing cells. However, the upstream signal that triggers PS externalization remained elusive. Here we report that a robust and transient increase of cytoplasmic Ca2+ level occurs prior to the exposure of PS on necrotic touch neurons. Inhibiting the release of Ca2+ from the ER, either pharmacologically or genetically, specifically impairs PS exposure on necrotic but not apoptotic cells. On the contrary, inhibiting the reuptake of cytoplasmic Ca2+ into the ER induces ectopic necrosis and PS exposure. Remarkably, PS exposure occurs independently of other necrosis events. Furthermore, unlike in mutants of DEG/ENaC channels, in dominant mutants of deg-3 and trp-4, which encode Ca2+ channels, PS exposure on necrotic neurons does not rely on the ER Ca2+ pool. Our findings indicate that high levels of cytoplasmic Ca2+ are necessary and sufficient for PS exposure. They further reveal two Ca2+-dependent, necrosis-specific pathways that promote PS exposure, a "two-step" pathway initiated by a modest influx of Ca2+ and further boosted by the release of Ca2+ from the ER, and another, ER-independent, pathway. Moreover, we found that ANOH-1, the worm homolog of mammalian phospholipid scramblase TMEM16F, is necessary for efficient PS exposure in thapsgargin-treated worms and trp-4 mutants, like in mec-4 mutants. We propose that both the ER-mediated and ER-independent Ca2+ pathways promote PS externalization through activating ANOH-1.


Asunto(s)
Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Fosfatidilserinas/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Dantroleno/farmacología , Canales de Sodio Degenerina/genética , Canales de Sodio Degenerina/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Inhibidores Enzimáticos/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Relajantes Musculares Centrales/farmacología , Necrosis/genética , Necrosis/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Tapsigargina/farmacología
10.
Immunopharmacol Immunotoxicol ; 46(2): 192-198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147028

RESUMEN

OBJECTIVE: Endoplasmic reticulum stress (ERS) and Toll-like receptor 2 (TLR2) signaling play an important role in inflammatory bowel disease (IBD); however, the link between TLR2 and ERS in IBD is unclear. This study investigated whether Thapsigargin (TG) -induced ER protein expression levels contributed to TLR2-mediated inflammatory response. METHODS: The THP-1 cells were treated with TLR2 agonist (Pam3CSK4), ERS inducer Thapsigargin (TG) or inhibitor (TUDCA). The mRNA expressions of TLR1-TLR10 were detected by qPCR. The production and secretion of inflammatory factors were detected by PCR and ELISA. Immunohistochemistry was used to detect the expressions of GRP78 and TLR2 in the intestinal mucosa of patients with Crohn's disease (CD). The IBD mouse model was established by TNBS in the modeling group. ERS inhibitor (TUDCA) was used in the treatment group. RESULTS: The expression of TLRs was detected via polymerase chain reaction (PCR) in THP-1 cells treated by ERS agonist Thapsigargin (TG). According to the findings, TG could promote TLR2 and TLR5 expression. Subsequently, in TLR2 agonist Pam3CSK4 induced THP-1 cells, TG could lead to increased expression of the inflammatory factors such as TNF-α, IL-1ß and IL-8, and ERS inhibitor (TUDCA) could block this effect. However, Pam3CSK4 did not significantly impact the GRP78 and CHOP expression. Based upon the immunohistochemical results, TLR2 and GRP78 expression were significantly increased in the intestinal mucosa of patients with Crohn's disease (CD). For in vivo experiments, TUDCA displayed the ability to inhibit intestinal mucosal inflammation and reduce GRP78 and TLR2 proteins. CONCLUSIONS: ERS and TLR2 is upregulated in inflammatory bowel disease, ERS may promote TLR2 pathway-mediated inflammatory response. Moreover, ERS and TLR2 signaling could be novel therapeutic targets for IBD.


Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Ácido Tauroquenodesoxicólico , Ratones , Animales , Humanos , Receptor Toll-Like 2/metabolismo , Chaperón BiP del Retículo Endoplásmico , Tapsigargina/farmacología , Estrés del Retículo Endoplásmico
11.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000233

RESUMEN

The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Hepatocitos , Proteína Disulfuro Isomerasas , Transducción de Señal , Tunicamicina , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Hepatocitos/metabolismo , Animales , Tunicamicina/farmacología , Retículo Endoplásmico/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Línea Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Tapsigargina/farmacología , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Supervivencia Celular/efectos de los fármacos
12.
J Biol Chem ; 298(9): 102336, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931111

RESUMEN

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.


Asunto(s)
Colorantes Fluorescentes , Quelantes del Hierro , Mitocondrias , Animales , Calcio/metabolismo , Cationes Bivalentes/análisis , Células Cultivadas , Fluorescencia , Colorantes Fluorescentes/química , Quelantes del Hierro/análisis , Ratones , Mitocondrias/química , Proteínas Mitocondriales/química , Oxiquinolina/química , Rodamina 123 , Tapsigargina/farmacología
13.
J Cell Physiol ; 238(9): 2050-2062, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332264

RESUMEN

Orai1 is the pore-forming subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1ß, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca2+ concentration, as demonstrated by cell loading with the fast intracellular Ca2+ chelator dimethyl BAPTA in the absence of extracellular Ca2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1ß to the plasma membrane when expressed individually; by contrast, when Orai1ß is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1ß in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca2+ store depletion.


Asunto(s)
Canales de Calcio , Canales de Calcio Activados por la Liberación de Calcio , Proteína ORAI1 , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Tapsigargina/farmacología , Humanos , Células HEK293
14.
Am J Physiol Endocrinol Metab ; 325(3): E280-E290, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529833

RESUMEN

Stimulation of functional ß-cell mass expansion can be beneficial for the treatment of type 2 diabetes. Our group has previously demonstrated that the matricellular protein CCN2 can induce ß-cell mass expansion during embryogenesis, and postnatally during pregnancy and after 50% ß-cell injury. The mechanism by which CCN2 stimulates ß-cell mass expansion is unknown. However, CCN2 does not induce ß-cell proliferation in the setting of euglycemic and optimal functional ß-cell mass. We thus hypothesized that ß-cell stress is required for responsiveness to CCN2 treatment. In this study, a doxycycline-inducible ß-cell-specific CCN2 transgenic mouse model was utilized to evaluate the effects of CCN2 on ß-cell stress in the setting of acute (thapsigargin treatment ex vivo) or chronic [high-fat diet or leptin receptor haploinsufficiency (db/+) in vivo] cellular stress. CCN2 induction during 1 wk or 10 wk of high-fat diet or in db/+ mice had no effect on markers of ß-cell stress. However, CCN2 induction did result in a significant increase in ß-cell mass over high-fat diet alone when animals were fed high-fat diet for 10 wk, a duration known to induce insulin resistance. CCN2 induction in isolated islets treated with thapsigargin ex vivo resulted in upregulation of the gene encoding the Nrf2 transcription factor, a master regulator of antioxidant genes, suggesting that CCN2 further activates this pathway in the presence of cell stress. These studies indicate that the potential of CCN2 to induce ß-cell mass expansion is context-dependent and that the presence of ß-cell stress does not ensure ß-cell proliferation in response to CCN2.NEW & NOTEWORTHY CCN2 promotes ß-cell mass expansion in settings of suboptimal ß-cell mass. Here, we demonstrate that the ability of CCN2 to induce ß-cell mass expansion in the setting of ß-cell stress is context-dependent. Our results suggest that ß-cell stress is necessary but insufficient for CCN2 to increase ß-cell proliferation and mass. Furthermore, we found that CCN2 promotes upregulation of a key antioxidant transcription factor, suggesting that modulation of ß-cell oxidative stress contributes to the actions of CCN2.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Diabetes Mellitus Tipo 2 , Animales , Femenino , Ratones , Embarazo , Antioxidantes , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Ratones Transgénicos , Tapsigargina/farmacología , Factores de Transcripción
15.
J Cell Sci ; 134(6)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33622772

RESUMEN

A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of Ca2+ levels using organelle-specific fluorescent indicator dyes showed that Ca2+ efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A-knockout cells. Furthermore, SEC24A-knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A-knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and Ca2+ flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial Ca2+ levels, including autophagy and apoptosis.


Asunto(s)
Calcio , Retículo Endoplásmico , Apoptosis , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacología
16.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012567

RESUMEN

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Proteínas de Fusión bcr-abl , Fosforilación Oxidativa , Tapsigargina/farmacología , Tapsigargina/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores Enzimáticos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Oligomicinas/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis
17.
Cell Commun Signal ; 21(1): 307, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904178

RESUMEN

Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.


Asunto(s)
Retículo Endoplásmico , Vejiga Urinaria , Humanos , Estrés del Retículo Endoplásmico , Citoesqueleto , Tapsigargina/farmacología
18.
Biol Pharm Bull ; 46(4): 630-635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005308

RESUMEN

The improvement of type 2 diabetes mellitus induced by naturally occurring polyphenols, known as flavonoids, has received considerable attention. However, there is a dearth of information regarding the effect of the trihydroxyflavone apigenin on pancreatic ß-cell function. In the present study, the anti-diabetic effect of apigenin on pancreatic ß-cell insulin secretion, apoptosis, and the mechanism underlying its anti-diabetic effects, were investigated in the INS-ID ß-cell line. The results showed that apigenin concentration-dependently facilitated 11.1-mM glucose-induced insulin secretion, which peaked at 30 µM. Apigenin also concentration-dependently inhibited the expression of endoplasmic reticulum (ER) stress signaling proteins, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3, which was elevated by thapsigargin in INS-1D cells, with peak suppression at 30 µM. This was strongly correlated with the results of flow cytometric analysis of annexin V/propidium iodide (PI) staining and DNA fragmentation analysis. Moreover, the increased expression of thioredoxin-interacting protein (TXNIP) induced by thapsigargin was remarkably reduced by apigenin in a concentration-dependent manner. These results suggest that apigenin is an attractive candidate with remarkable and potent anti-diabetic effects on ß-cells, which are mediated by facilitating glucose-stimulated insulin secretion and preventing ER stress-mediated ß-cell apoptosis, the latter of which may be possibly mediated by reduced expression of CHOP and TXNIP, thereby promoting ß-cell survival and function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Apigenina/farmacología , Tapsigargina/metabolismo , Tapsigargina/farmacología , Apoptosis , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Factor de Transcripción CHOP/metabolismo
19.
J Dairy Sci ; 106(10): 7131-7146, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37164848

RESUMEN

Hypocalcemia in dairy cows is associated with a decrease of neutrophil adhesion and phagocytosis, an effect driven partly by changes in the expression of store-operated Ca2+ entry (SOCE)-related molecules. It is well established in nonruminants that neutrophils obtain the energy required for immune function through glycolysis. Whether glycolysis plays a role in the acquisition of energy by neutrophils during hypocalcemia in dairy cows is unknown. To address this relationship, we performed a cohort study and then a clinical trial. Neutrophils were isolated at 2 d postcalving from lactating Holstein dairy cows (average 2.83 ± 0.42 lactations, n = 6) diagnosed as clinically healthy (CON) or with plasma concentrations of Ca2+ <2.0 mmol/L as a criterion for diagnosing subclinical hypocalcemia (HYP, average 2.83 ± 0.42 lactations, n = 6). In the first experiment, neutrophils were isolated from blood of CON and HYP cows and used to analyze aspects of adhesion and phagocytosis function through quantitative reverse-transcription PCR along with confocal laser scanning microscopy, mRNA expression of the glycolysis-related gene hexokinase 2 (HKII), and components of the SOCE moiety ORAI calcium release-activated calcium modulator 1 (ORAI1, ORAI2, ORAI3, stromal interaction molecule 1 [STIM1], and STIM2). Results showed that adhesion and phagocytosis function were reduced in HYP cows. The mRNA expression of adhesion-related syndecan-4 (SDC4), integrin ß9 (ITGA9), and integrin ß3 (ITGB3) and phagocytosis-related molecules complement component 1 R subcomponent (C1R), CD36, tubulinß1 (TUBB1) were significantly decreased in the HYP group. In the second experiment, to address how glycolysis affects neutrophil adhesion and phagocytosis, neutrophils isolated from CON and HYP cows were treated with 2 µM HKII inhibitor benserazide-d3 or 1 µM fructose-bisphosphatase 1 (FBP1) inhibitor MB05032 for 1 h. Results revealed that the HKII inhibitor benserazide-d3 reduced phagocytosis and the mRNA abundance of ITGA9, and CD36 in the HYP group. The FBP1 inhibitor MB05032 increased adhesion and phagocytosis and increased mRNA abundance of HKII, ITGA9, and CD36 in the HYP group. Finally, to investigate the mechanism whereby SOCE-sensitive glycolysis affects neutrophil adhesion and phagocytosis, isolated neutrophils were treated with 1 µM SOCE activator thapsigargin or 50 µM inhibitor 2-APB for 1 h. Results showed that thapsigargin increased mRNA abundance of HKII, ITGA9, and CD36, and increased adhesion and phagocytosis in the HYP group. In contrast, 2-APB decreased mRNA abundance of HKII and both adhesion and phagocytosis of neutrophils in the CON group. Overall, the data indicated that SOCE-sensitive intracellular Ca2+ levels affect glycolysis and help regulate adhesion and phagocytosis of neutrophils during hypocalcemia in dairy cows.


Asunto(s)
Hipocalcemia , Humanos , Femenino , Bovinos , Animales , Hipocalcemia/veterinaria , Hipocalcemia/metabolismo , Neutrófilos/metabolismo , Calcio/metabolismo , Lactancia , Tapsigargina/farmacología , Benserazida/farmacología , Estudios de Cohortes , Fagocitosis , ARN Mensajero
20.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675008

RESUMEN

Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype. We analyzed Ca2+ levels by single-cell video-imaging and TG2 activity by a microplate assay. Western blots and PCR analyses were employed to monitor TG2 levels and markers of ER stress and autophagy. We found that the cytosolic and ER Ca2+ level of CD cells was lower than in control cells. Treatments with thapsigargin differently activated TG2 in control and CD cells, as well as caused slightly different responses regarding the activation of ER stress and the expression of autophagic markers. On the whole, our findings identified further molecular features of the celiac cellular phenotype and highlighted that CD cells appeared less capable of adapting to a stress condition and responding in a physiological way.


Asunto(s)
Enfermedad Celíaca , Humanos , Enfermedad Celíaca/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Tapsigargina/farmacología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo , Autofagia , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA