Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0228323, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38757978

RESUMEN

Resistance to potassium tellurite (PT) is an important indicator in isolating Shiga toxin-producing Escherichia coli (STEC) O157:H7 and other major STEC serogroups. Common resistance determinant genes are encoded in the ter gene cluster. We found an O157:H7 isolate that does not harbor ter but is resistant to PT. One nonsynonymous mutation was found in another PT resistance gene, tehA, through whole-genome sequence analyses. To elucidate the contribution of this mutation to PT resistance, complementation of tehA and the related gene tehB in isogenic strains and quantitative RT‒PCR were performed. The results indicated that the point mutation not only changed an amino acid of tehA, but also was positioned on a putative internal promoter of tehB and increased PT resistance by elevating tehB mRNA expression. Meanwhile, the amino acid change in tehA had negligible impact on the PT resistance. Comprehensive screening revealed that 2.3% of O157:H7 isolates in Japan did not harbor the ter gene cluster, but the same mutation in tehA was not found. These results suggested that PT resistance in E. coli can be enhanced through one mutational event even in ter-negative strains. IMPORTANCE: Selective agents are important for isolating Shiga toxin-producing Escherichia coli (STEC) because the undesirable growth of microflora should be inhibited. Potassium tellurite (PT) is a common selective agent for major STEC serotypes. In this study, we found a novel variant of PT resistance genes, tehAB, in STEC O157:H7. Molecular experiments clearly showed that one point mutation in a predicted internal promoter region of tehB upregulated the expression of the gene and consequently led to increased resistance to PT. Because tehAB genes are ubiquitous across E. coli, these results provide universal insight into PT resistance in this species.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Regiones Promotoras Genéticas , Telurio , Telurio/farmacología , Escherichia coli O157/genética , Escherichia coli O157/efectos de los fármacos , Proteínas de Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Mutación , Antibacterianos/farmacología , Japón
2.
Luminescence ; 39(6): e4799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858760

RESUMEN

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Telurio , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Telurio/química , Telurio/farmacología , Staphylococcus aureus/efectos de los fármacos , Catálisis , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Procesos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Manganeso/química , Manganeso/farmacología , Estaño/química , Estaño/farmacología , Tamaño de la Partícula , Óxidos/química , Óxidos/farmacología
3.
Environ Res ; 226: 115659, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906266

RESUMEN

Allium sativum (A. sativum)is well known for its therapeutic and culinary uses. Because of their high medicinal properties, the clove extract was selected to synthesize cobalt-tellurium nanoparticles. The aim of the study was to evaluate the protective activity of the nanofabricated cobalt-tellurium using A. sativum (Co-Tel-As-NPs) against H2O2-induced oxidative damage in HaCaT cells. Synthesized Co-Tel-As-NPs were analyzed using UV-Visible spectroscopy, FT-IR, EDAX, XRD, DLS, and SEM. Various concentrations of Co-Tel-As-NPs were used as a pretreatment on HaCaT cells before H2O2 was added. Then, the cell viability and mitochondrial damage were compared between pretreated and untreated control cells using an array of assays (MTT, LDH, DAPI, MMP, and TEM), and the intracellular ROS, NO, and antioxidant enzyme production were examined. In the present research, Co-Tel-As-NPs at different concentrations (0.5, 1.0, 2.0, and 4.0µg/mL) were tested for toxicity using HaCaT cells. Furthermore, the effect of H2O2 on the viability of HaCaT cells was evaluated using the MTT assay for Co-Tel-As-NPs. Among those, Co-Tel-As-NPs at 4.0 µg/mL showed notable protection; with the same treatment, cell viability was discovered to be 91% and LDH leakage was also significantly decreased. Additionally, the measurement of mitochondrial membrane potential was significantly decreased by Co-Tel-As-NPs pretreatment against H2O2. The recovery of the condensed and fragmented nuclei brought about by the action of Co-Tel-As-NPs was identified using DAPI staining. TEM examination of the HaCaT cells revealed that the Co-Tel-As-NPs had a therapeutic effect against H2O2 keratinocyte damage.


Asunto(s)
Antioxidantes , Ajo , Humanos , Antioxidantes/metabolismo , Peróxido de Hidrógeno/toxicidad , Ajo/metabolismo , Telurio/farmacología , Células HaCaT/metabolismo , Cobalto/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
4.
Drug Resist Updat ; 63: 100844, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533630

RESUMEN

Selenium is an essential trace element that is crucial for cellular antioxidant defense against reactive oxygen species (ROS). Recently, many selenium-containing compounds have exhibited a wide spectrum of biological activities that make them promising scaffolds in Medicinal Chemistry, and, in particular, in the search for novel compounds with anticancer activity. Similarly, certain tellurium-containing compounds have also exhibited substantial biological activities. Here we provide an overview of the biological activities of seleno- and tellurocompounds including chemopreventive activity, antioxidant or pro-oxidant activity, modulation of the inflammatory processes, induction of apoptosis, modulation of autophagy, inhibition of multidrug efflux pumps such as P-gp, inhibition of cancer metastasis, selective targeting of tumors and enhancement of the cytotoxic activity of chemotherapeutic drugs, as well as overcoming tumor drug resistance. A review of the chemistry of the most relevant seleno- or tellurocompounds with activity against resistant cancers is also presented, paying attention to the synthesis of these compounds and to the preparation of bioactive selenium or tellurium nanoparticles. Based on these data, the use of these seleno- and tellurocompounds is a promising approach in the development of strategies that can drive forward the search for novel therapies or adjuvants of current therapies against drug-resistant cancers.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Selenio , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno , Selenio/química , Selenio/farmacología , Selenio/uso terapéutico , Telurio/química , Telurio/farmacología , Telurio/uso terapéutico
5.
Anal Chem ; 94(8): 3608-3616, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35179864

RESUMEN

The hepatotoxicity of cadmium-based quantum dots (Cd-QDs) has become the focus with their extensive applications in biomedicine. Previous reports have demonstrated that high oxidative stress and consequent redox imbalance play critical roles in their toxicity mechanisms. Intracellular antioxidant proteins, such as thioredoxin 1 (Trx1) and peroxiredoxin 1 (Prx1), could regulate redox homeostasis through thiol-disulfide exchange. Herein, we hypothesized that the excessive reactive oxygen species (ROS) induced by Cd-QD exposure affects the functions of Trx1 or Prx1, which further causes abnormal apoptosis of liver cells and hepatotoxicity. Thereby, three types of Cd-QDs, CdS, CdSe, and CdTe QDs, were selected for conducting an intensive study. Under the same conditions, the H2O2 level in the CdTe QD group was much higher than that of CdS or CdSe QDs, and it also corresponded to the higher hepatotoxicity. Mass spectrometry (MS) results show that excessive H2O2 leads to sulfonation modification (-SO3H) at the active sites of Trx1 (Cys32 and Cys35) and Prx1 (Cys52 and Cys173). The irreversible oxidative modifications broke their cross-linking with the apoptosis signal-regulating kinase 1 (ASK1), resulting in the release and activation of ASK1, and activation of the downstream JNK/p38 signaling finally promoted liver cell apoptosis. These results highlight the key effect of the high oxidative stress, which caused irreversible oxidative modifications of Trx1 and Prx1 in the mechanisms involved in Cd-QD-induced hepatotoxicity. This work provides a new perspective on the hepatotoxicity mechanisms of Cd-QDs and helps design safe and reliable Cd-containing nanoplatforms.


Asunto(s)
Compuestos de Cadmio , Enfermedad Hepática Inducida por Sustancias y Drogas , Puntos Cuánticos , Cadmio/toxicidad , Compuestos de Cadmio/toxicidad , Humanos , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Telurio/farmacología , Tiorredoxinas/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232999

RESUMEN

Antibacterial tellurium nanoparticles have the advantages of high activity and biocompatibility. Microbial synthesis of Te nanoparticles is not only a green technology but builds new ecological relationships in diverse environments. However, the antibacterial mechanism of Te nanoparticles is largely unclear. In this study, we report the bacterial synthesis of rod-shaped Te nanoparticles (BioTe) with high antibacterial activity against Escherichia coli. Morphology and permeability examination indicates that membrane damage is the primary reason for the antibacterial activity of BioTe, rather than ROS production and DNA damage. Moreover, a comparison of transcriptome and relative phenotypes reveals the difference in antibacterial mechanisms between BioTe and tellurite. Based on our evidence, we propose an antibacterial mode of rod-shaped BioTe, in which positively charged BioTe interact with the cell membrane through electrostatic attraction and then penetrate the membrane by using their sharp ends. In contrast, tellurite toxicity might be involved in sulfur metabolism.


Asunto(s)
Nanopartículas , Telurio , Antibacterianos/farmacología , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno , Azufre , Telurio/metabolismo , Telurio/farmacología
7.
World J Microbiol Biotechnol ; 38(11): 188, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972591

RESUMEN

Selenium (SeNPs) and tellurium nanoparticles (TeNPs) were synthesized by green technology using the three new bacterial marine isolates (strains PL 2476, AF 2469 and G 2451). Isolates were classified as Pseudoalteromonas shioyasakiensis according to 16S rRNA sequence analysis, morphological characteristics, and biochemical reactions. The bioreduction processes of isolates were studied in comparison with the previously described Alteromonas macleodii (strain 2328). All strains exhibited significant tolerance to selenite and tellurite up to 1000 µg/mL. A comparative analysis of the bioreduction processes of the isolates demonstrated that the strains have a high rate of reduction processes. Characterization of biogenic red SeNPs and black TeNPs using scanning electron microscopy (SEM), EDX analysis, Dynamic Light Scattering, and micro-Raman Spectroscopy revealed that all the isolates form stable spherical selenium and tellurium nanoparticles whose size as well as elemental composition depend on the producer strain. Nanoparticles of the smallest size (up to 100 nm) were observed only for strain PL 2476. Biogenic SeNPs and TeNPs were also characterized and tested for their antimicrobial, antifouling and cytotoxic activities. Significant antimicrobial activity was shown for nanoparticles at relatively high concentrations (500 and 1000 µg/mL), with the antimicrobial activity of TeNPs being more significant than SeNPs. In contrast, against cell cultures (breast cancer cells (SkBr3) and human dermal fibroblasts (HDF) SeNPs showed greater toxicity than tellurium nanoparticles. Studies have demonstrated the high antifouling effectiveness of selenium and tellurium nanoparticles when introduced into self-polishing coatings. According to the results obtained, the use of SeNPs and TeNPs as antifouling additives can reduce the concentration of leachable biocides used in coatings, reducing the pressure on the environment.


Asunto(s)
Nanopartículas , Selenio , Bacterias , Humanos , Nanopartículas/química , ARN Ribosómico 16S/genética , Selenio/farmacología , Telurio/química , Telurio/farmacología
8.
Clin Exp Immunol ; 203(3): 375-384, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205391

RESUMEN

Despite undeniable improvement in the management of rheumatoid arthritis (RA), the discovery of more effective, less toxic and, ideally, less immune suppressive drugs are much needed. In the current study, we set to explore the potential anti-rheumatic activity of the non-toxic, tellurium-based immunomodulator, AS101 in an experimental animal model of RA. The effect of AS101 was assessed on adjuvant-induced arthritis (AIA) rats. Clinical signs of arthritis were assessed. Histopathological examination was used to assess inflammation, synovial changes and tissue lesions. Very late antigen-4 (VLA-4)+ cellular infiltration was detected using immunohistochemical staining. Enzyme-linked immunosorbent assay (ELISA) was used to measure circulating anti-cyclic citrullinated-peptide autoantibody (ACPA) and real-time polymerase chain reaction (PCR) was used to measure the in-vitro effect of AS101 on interleukin (IL)-6 and IL-1ß expression in activated primary human fibroblasts. Prophylactic treatment with intraperitoneal AS101 reduced clinical arthritis scores in AIA rats (P < 0·01). AS101 abrogated the migration of active chronic inflammatory immune cells, particularly VLA-4+ cells, into joint cartilage and synovium, reduced the extent of joint damage and preserved joint architecture. Compared to phosphate-buffered saline (PBS)-treated AIA rats, histopathological inflammatory scores were significantly reduced (P < 0·05). Furthermore, AS101 resulted in a marked reduction of circulating ACPA in comparison to PBS-treated rats (P < 0·05). Importantly, AS101 significantly reduced mRNA levels of proinflammatory mediators such as IL-6 (P < 0·05) and IL-1ß (P < 0·01) in activated primary human fibroblasts. Taken together, we report the first demonstration of the anti-rheumatic/inflammatory activity of AS101 in experimental RA model, thereby supporting an alternative early therapeutic intervention and identifying a promising agent for therapeutic intervention.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Etilenos/inmunología , Telurio/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Artritis Experimental/metabolismo , Artritis Experimental/prevención & control , Artritis Reumatoide/metabolismo , Artritis Reumatoide/prevención & control , Células Cultivadas , Etilenos/farmacología , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Factores Inmunológicos/inmunología , Factores Inmunológicos/farmacología , Integrina alfa4beta1/inmunología , Integrina alfa4beta1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratas Endogámicas Lew , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telurio/farmacología
9.
Bioorg Med Chem Lett ; 45: 128147, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052322

RESUMEN

We evaluated in vitro a series of telluride containing compounds bearing the benzenesulfonamide group, as effective inhibitors of the physiologically relevant human (h) expressed Carbonic Anhydrase (CA; EC 4.2.1.1) enzymes I, II, IV VII and IX. The potent effects of such compounds against the tumor-associated hCA IX being low nanomolar inhibitors (KI 2.2 to 2.9 nM) and with good selectivity over the ubiquitous hCA II, gave the possibility to evaluate their lethal effect in vitro against a breast cancer cell line (MDA-MB-231). Among the series, both compounds 3a and 3g induced significant toxic effects against tumor cells after 48 h incubation. Under normoxic condition 3a showed high efficacy killing over 94% of tumor cells at 1 µM, and derivative 3g reached the tumor cell viability under the 5% at 10 µM. In hypoxic condition, these two compounds showed less effective although retained excellent cancer cell killer. These unusual features make them interesting lead compounds acting as antitumor agents also in tumor types not dependent from hCA IX overexpression.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Sulfonamidas/farmacología , Telurio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Telurio/química
10.
Biometals ; 34(5): 1007-1016, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34173930

RESUMEN

Pseudomonas aeruginosa, an opportunistic human pathogen, is a major health concern as it grows as a biofilm and evades the host's immune defenses. Formation of biofilms on catheter and endotracheal tubes demands the development of biofilm-preventive (anti-biofilm) approaches and evaluation of nanomaterials as alternatives to antibiotics. The present study reports the successful biosynthesis of tellurium nanorods using cell lysate of Haloferax alexandrinus GUSF-1 (KF796625). The black particulate matter had absorption bands at 0.5 and 3.6 keV suggestive of elemental tellurium; showed x-ray diffraction peaks at 2θ values 24.50°, 28.74°, 38.99°, 43.13°, 50.23° and displayed a crystallite size of 36.99 nm. The black nanorods of tellurium were an average size of 40 nm × 7 nm, as observed in transmission electron microscopy. To our knowledge, the use of cell lysate of Haloferax alexandrinus GUSF-1 (KF796625) as a green route for the biosynthesis of tellurium nanorods with a Pseudomonas aeruginosa biofilm inhibiting capacity is novel to haloarchaea. At 50 µg mL-1, these tellurium nanorods exhibited 75.03% in-vitro reduction of biofilms of Pseudomonas aeruginosa ATCC 9027, comparable to that of ciprofloxacin, which is used in treatment of Pseudomonas infections. Further, the observed ability of these nanoparticles to inhibit the formation of Pseudomonas biofilms is worthy of future research perusal.


Asunto(s)
Haloferax , Nanotubos , Infecciones por Pseudomonas , Antibacterianos/farmacología , Biopelículas , Humanos , Pseudomonas aeruginosa , Telurio/farmacología
11.
Biometals ; 34(4): 937-946, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34255250

RESUMEN

The tellurium oxyanion tellurate is toxic to living organisms even at low concentrations; however, its mechanism of toxicity is poorly understood. Here, we show that exposure of Escherichia coli K-12 to tellurate results in reduction to elemental tellurium (Te[0]) and the formation of intracellular reactive oxygen species (ROS). Toxicity assays performed with E. coli indicated that pre-oxidation of the intracellular thiol pools increases cellular resistance to tellurate-suggesting that intracellular thiols are important in tellurate toxicity. X-ray absorption spectroscopy experiments demonstrated that cysteine reduces tellurate to elemental tellurium. This redox reaction was found to generate superoxide anions. These results indicate that tellurate reduction to Te(0) by cysteine is a source of ROS in the cytoplasm of tellurate-exposed cells.


Asunto(s)
Cisteína/metabolismo , Escherichia coli K12/efectos de los fármacos , Telurio/farmacología , Escherichia coli K12/citología , Escherichia coli K12/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Telurio/metabolismo
12.
J Appl Microbiol ; 131(1): 155-168, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33274558

RESUMEN

AIM: Fluorescent semiconductor nanoparticles or quantum dots (QDs) have excellent properties as photosensitizers in photodynamic therapy. This is mainly a consequence of their nanometric size and the generation of light-activated redox species. In previous works, we have reported the low-cost biomimetic synthesis of glutathione (GSH) capped QDs (CdTe-GSH QDs) with high biocompatibility. However, no studies have been performed to determine their phototoxic effect. The aim of this work was to characterize the light-induced toxicity of green (QDs500 ) and red (QDs600 ) QDs in Escherichia coli, and to study the molecular mechanism involved. METHODS AND RESULTS: Photodegradation and reduction power of biomimetic QDs was determined to analyse their potential for radical generation. Escherichia coli cells were exposed to photoactivated QDs and viability was evaluated at different times. High toxicity was determined in E. coli cells exposed to photoactivated QDs, particularly QDs500 . The molecular mechanism involved in QDs phototoxicity was studied by determining Cd2+ -release and intracellular reactive oxygen species (ROS). Cells exposed to photoactivated QDs500 presented high levels of ROS. Cells exposed to photoactivated QDs500 presented high levels of ROS. Finally, to understand this phenomenon and the importance of oxidative and cadmium-stress in QDs-mediated phototoxicity, experiments were performed in E. coli mutants in ROS and Cd2+ response genes. As expected, E. coli mutants in ROS response genes were more sensitive than the wt strain to photoactivated QDs, with a higher effect in green-QDs500 . No increase in phototoxicity was observed in cadmium-related mutants. CONCLUSION: Obtained results indicate that light exposure increases the toxicity of biomimetic QDs on E. coli cells. The mechanism of bacterial phototoxicity of biomimetic CdTe-GSH QDs is mostly associated with ROS generation. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented establish biomimetic CdTe-GSH QDs as a promising cost-effective alternative against microbial infections, particularly QDs500 .


Asunto(s)
Compuestos de Cadmio/farmacología , Cadmio/metabolismo , Escherichia coli/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Puntos Cuánticos/toxicidad , Telurio/farmacología , Antibacterianos/farmacología , Materiales Biomiméticos/farmacología , Biomimética , Viabilidad Microbiana , Mutación , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
13.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638861

RESUMEN

Among organic-inorganic hybrid molecules consisting of organic structure(s) and metal(s), only few studies are available on the cytotoxicity of nucleophilic molecules. In the present study, we investigated the cytotoxicity of a nucleophilic organotellurium compound, diphenyl ditelluride (DPDTe), using a cell culture system. DPDTe exhibited strong cytotoxicity against vascular endothelial cells and fibroblasts along with high intracellular accumulation but showed no cytotoxicity and had less accumulation in vascular smooth muscle cells and renal epithelial cells. The cytotoxicity of DPDTe decreased when intramolecular tellurium atoms were replaced with selenium or sulfur atoms. Electronic state analysis revealed that the electron density between tellurium atoms in DPDTe was much lower than those between selenium atoms of diphenyl diselenide and sulfur atoms of diphenyl disulfide. Moreover, diphenyl telluride did not accumulate and exhibit cytotoxicity. The cytotoxicity of DPDTe was also affected by substitution. p-Dimethoxy-DPDTe showed higher cytotoxicity, but p-dichloro-DPDTe and p-methyl-DPDTe showed lower cytotoxicity than that of DPDTe. The subcellular distribution of the compounds revealed that the compounds with stronger cytotoxicity showed higher accumulation rates in the mitochondria. Our findings suggest that the electronic state of tellurium atoms in DPDTe play an important role in accumulation and distribution of DPDTe in cultured cells. The present study supports the hypothesis that nucleophilic organometallic compounds, as well as electrophilic organometallic compounds, exhibit cytotoxicity by particular mechanisms.


Asunto(s)
Derivados del Benceno/farmacología , Células Endoteliales/efectos de los fármacos , Compuestos Organometálicos/farmacología , Compuestos de Organoselenio/farmacología , Telurio/farmacología , Animales , Derivados del Benceno/química , Derivados del Benceno/metabolismo , Bovinos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Células LLC-PK1 , Modelos Químicos , Estructura Molecular , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Porcinos , Telurio/química
14.
Bioorg Chem ; 87: 516-522, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928874

RESUMEN

A new series of ß-aminochalcogenides were designed and synthesized to identify new carbonic anhydrase activator (CAA) agents as novel tools for the management of several neurodegenerative and metabolic disorders which represent a clinical challenge without effective therapies available. Some ß-aminoselenides and ß-aminotellurides showed effective CA activating effects and a potent antioxidant activity. CAAs may have applications for memory therapy and CA deficiency syndromes.


Asunto(s)
Aminas/farmacología , Antioxidantes/farmacología , Anhidrasas Carbónicas/metabolismo , Selenio/farmacología , Azufre/farmacología , Telurio/farmacología , Aminas/química , Antioxidantes/química , Relación Dosis-Respuesta a Droga , Humanos , Isoenzimas/metabolismo , Estructura Molecular , Selenio/química , Relación Estructura-Actividad , Azufre/química , Telurio/química
15.
Nanomedicine ; 17: 36-46, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30654187

RESUMEN

Nanocolumnar titanium coatings have been fabricated in two sputtering systems with very different characteristics (a laboratory setup and semi-industrial equipment), thus possessing different morphologies (150 nm long columns tilted 20° from the normal and 300 nm long ones tilted 40°, respectively). These coatings exhibit similar antibacterial properties against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria. When a synergic route is followed and these coatings are functionalized with tellurium (Te) nanorods, the antibacterial properties are enhanced, especially for the long nanocolumns case. The biocompatibility is preserved in all the nanostructured coatings.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Telurio/farmacología , Titanio/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/prevención & control , Humanos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotubos/química , Nanotubos/ultraestructura , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Telurio/química , Titanio/química
16.
Bull Exp Biol Med ; 168(2): 229-232, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31776947

RESUMEN

We studied the effect of a new cyanine dye containing selenium and tellurium on acetylcholinesterase activity in synaptic membrane in rat brain. The cyanine dye dose-dependently inhibits activity of this enzyme, and the concentration of half-maximal inhibition of acetylcholinesterase activity was 20.46 µM. The cyanine dye instantly inhibits the enzyme; the degree of inhibition depends on acetylthiocholine concentration: the lower is acetylthiocholine concentration, the higher is the degree of inhibition. On the Lineweaver-Burk plot, the concentration dependence curves of acetylcholinesterase with and without cyanine dye intersect in one point on the abscissa axis. In this case, the cyanine dye reduces the maximum inhibition rate (Vmax) and does not affect Michaelis constant (Km). The calculated inhibition constant Ki for the cyanine dye is 7.74 µM. Thus, the cyanine dye is a non-competitive inhibitor of acetylcholinesterase.


Asunto(s)
Acetilcolinesterasa/metabolismo , Carbocianinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Selenio/farmacología , Membranas Sinápticas/metabolismo , Telurio/farmacología , Acetiltiocolina/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Ratas , Ratas Wistar
17.
Anal Chem ; 90(9): 5678-5686, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29644847

RESUMEN

The currently utilized ligand fishing for bioactive molecular screening from complex matrixes cannot perform imaging screening. Here, we developed a new solid-phase ligand fishing coupled with an in situ imaging protocol for the specific enrichment and identification of heat shock protein 90 (Hsp 90) inhibitors from Tripterygium wilfordii, utilizing a multiple-layer and microkernel-based mesoporous nanostructure composed of a protective silica coating CdTe quantum dot (QD) core and a mesoporous silica shell, i.e., microkernel-based mesoporous (SiO2-CdTe-SiO2)@SiO2 fluorescent nanoparticles (MMFNPs) as extracting carries and fluorescent probes. The prepared MMFNPs showed a highly uniform spherical morphology, retention of fluorescence emission, and great chemical stability. The fished ligands by Hsp 90α-MMFNPs were evaluated via the preliminary bioactivity based on real-time cellular morphology imaging by confocal laser scanning microscopy (CLSM) and then identified by mass spectrometry (MS). Celastrol was successfully isolated as an Hsp 90 inhibitor, and two other specific components screened by Hsp 90α-MMFNPs, i.e., demecolcine and wilforine, were preliminarily identified as potential Hsp 90 inhibitors through the verification of strong affinity to Hsp 90 and antitumor bioactivity. The approach based on the MMFNPs provides a strong platform for imaging screening and discovery of plant-derived biologically active molecules with high efficiency and selectivity.


Asunto(s)
Compuestos de Cadmio/química , Colorantes Fluorescentes/química , Nanopartículas/química , Imagen Óptica , Dióxido de Silicio/química , Telurio/química , Tripterygium/química , Compuestos de Cadmio/síntesis química , Compuestos de Cadmio/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/síntesis química , Dióxido de Silicio/farmacología , Relación Estructura-Actividad , Propiedades de Superficie , Telurio/farmacología
18.
Curr Microbiol ; 75(6): 752-759, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29423730

RESUMEN

Potassium tellurite (K2TeO3) is an effective selective agent for O157:H7 Shiga toxin-producing Escherichia coli (STEC), whereas tellurite resistance in non-O157 STEC is variable with information on O45 minimal. High-level K2TeO3 resistance in STEC is attributable to the ter gene cluster with terD an indicator of the cluster's presence. Polymerase chain reactions for terD and K2TeO3 minimum inhibitory concentration (MIC) determinations in broth cultures were conducted on 70 STEC and 40 non-STEC control organisms. Sixty-six STEC strains (94.3%) were terD+ compared to 28 control organisms (70.0%; P < 0.001). The prevalence of terD in O103 STEC strains was 70%, whereas in all other serogroups it was ≥ 90%. The K2TeO3 geometric mean MIC ranking for STEC serogroups from highest to lowest was O111 > O26 > O145 > O157 > O103 > O121 = O45. The K2TeO3 geometric mean MIC was significantly higher in terD+ than in terD- STEC, but not in terD+ versus terD- control strains. Resistance to K2TeO3 (MIC ≥ 25 mg/L) was exhibited by 65/66 terD+ and 0/4 terD- STEC strains, compared to 12/28 terD+ and 8/12 terD- control strains. These results confirm previous studies showing the significantly higher prevalence of the ter gene cluster in STEC strains, and the relationship between these genes and K2TeO3 resistance in STEC and especially intimin (eae)-positive STEC, in contrast to non-STEC organisms. O45 and O121 STEC, although frequently terD positive, on average had significantly lower levels of K2TeO3 resistance than O26, O111, and O145 STEC.


Asunto(s)
Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética , Telurio/farmacología , Pruebas de Sensibilidad Microbiana
19.
Ecotoxicol Environ Saf ; 156: 75-86, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29533210

RESUMEN

Nanoparticles (NPs) are inevitably released into the aquatic environment for being widely used and may affect the toxicity of other contaminants already present in the environment, such as trace metals. However, the effects of NPs on the ecotoxicity of cadmium (Cd), a common environmental trace metal pollutant, are not well explored. In this study, effects of four widely used NPs TiO2 (n-TiO2), SiO2 (n-SiO2), Ag (n-Ag) and CdTe/CdS core/shell quantum dots (QD) on the toxicity of Cd to the freshwater algae Chlamydomonas reinhardtii were assessed respectively. Cd reduced the algae biomass, impaired the photosynthetic activities, and led to intracellular oxidative stress of algae. At non-toxic concentrations, both n-TiO2 (100 mg L-1) and n-SiO2 (400 mg L-1) attenuated the toxicity of Cd towards the algae for reducing the intracellular Cd contents, and the former was more pronounced. QD (0.5 mg L-1) increased the toxicity of Cd to algae, but n-Ag (0.2 mg L-1) had no significant influence on the Cd toxicity to algae. The microscopic observations on the ultrastructure of algae cells presented the same phenomena and n-TiO2, n-SiO2 aggregations were clearly observed outside the cell wall. Furthermore, the regulation of NPs to the Cd toxicity towards algae was related to the intracellular nitric oxide (NO), an important signaling molecule, rather than the phototaxis of algae. Above all, this study provided a basic understanding about the difference in joint toxicity of different kinds of NPs and Cd to aquatic organisms.


Asunto(s)
Cadmio/toxicidad , Chlamydomonas reinhardtii/efectos de los fármacos , Metales/farmacología , Puntos Cuánticos , Contaminantes del Agua/toxicidad , Compuestos de Cadmio/farmacología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Interacciones Farmacológicas , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Dióxido de Silicio/farmacología , Plata/farmacología , Sulfuros/farmacología , Telurio/farmacología , Titanio/farmacología
20.
Langmuir ; 33(9): 2378-2386, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28178781

RESUMEN

The inhibitory effects of CdTe/ZnS quantum dots (QDs) modified with 3-mercaptopropionic acid (negatively charged) or cysteamine (positively charged) on the metabolic activity of Escherichia coli were investigated using biological microcalorimetry. Results show that the inhibitory ratio of positive QDs is higher than that of negative QDs. Transmission electron microscopy images indicate that QDs are prone to be adsorbed on the surface of E. coli. This condition disturbs the membrane structure and function of E. coli. Fluorescence anisotropy results demonstrate that positive QDs show a significant increase in the membrane fluidity of E. coli and dipalmitoylphosphatidylcholine (DPPC) model membrane. Furthermore, fluorescence anisotropy values of DPPC membrane in the gel phase decreased upon the addition of positive QDs. By contrast, anisotropy values in the liquid-crystalline phase are almost constant. The change in membrane fluidity is associated with the increased permeability of the membrane. Finally, the kinetics of dye leakage from liposomes demonstrate that the surface charge of QDs is crucial to the interaction between QDs and membrane.


Asunto(s)
Compuestos de Cadmio/farmacología , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Puntos Cuánticos/química , Sulfuros/farmacología , Telurio/farmacología , Compuestos de Zinc/farmacología , Compuestos de Cadmio/química , Membrana Celular/química , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Sulfuros/química , Propiedades de Superficie , Telurio/química , Compuestos de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA