Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Virol ; 96(5): e0155621, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019718

RESUMEN

Thogotoviruses are tick-borne arboviruses that comprise a unique genus within the Orthomyxoviridae family. Infections with thogotoviruses primarily cause disease in livestock with occasional reports of human infections suggesting a zoonotic potential. In the past, multiple genetically distinct thogotoviruses were isolated mostly from collected ticks. However, many aspects regarding their phylogenetic relationships, morphological characteristics, and virulence in mammals remain unclear. For the present comparative study, we used a collection of 10 different thogotovirus isolates from different geographic areas. Next-generation sequencing and subsequent phylogenetic analyses revealed a distinct separation of these viruses into two major clades, the Thogoto-like and Dhori-like viruses. Electron microscopy demonstrated a heterogeneous morphology with spherical and filamentous particles being present in virus preparations. To study their pathogenicity, we analyzed the viruses in a small animal model system. In intraperitoneally infected C57BL/6 mice, all isolates showed a tropism for liver, lung, and spleen. Importantly, we did not observe horizontal transmission to uninfected, highly susceptible contact mice. The isolates enormously differed in their capacity to induce disease, ranging from subclinical to fatal outcomes. In vivo multistep passaging experiments of two low-pathogenic isolates showed no increased virulence and sequence analyses of the passaged viruses indicated a high stability of the viral genomes after 10 mouse passages. In summary, our analysis demonstrates the broad genetic and phenotypic variability within the thogotovirus genus. Moreover, thogotoviruses are well adapted to mammals but their horizontal transmission seems to depend on ticks as their vectors. IMPORTANCE Since their discovery over 60 years ago, 15 genetically distinct members of the thogotovirus genus have been isolated. These arboviruses belong to the Orthomyxovirus family and share many features with influenza viruses. However, numerous of these isolates have not been characterized in depth. In the present study, we comparatively analyzed a collection of 10 different thogotovirus isolates to answer basic questions about their phylogenetic relationships, morphology, and pathogenicity in mice. Our results highlight shared and unique characteristics of this diverse genus. Taken together, these observations provide a framework for the phylogenic classification and phenotypic characterization of newly identified thogotovirus isolates that could potentially cause severe human infections as exemplified by the recently reported, fatal Bourbon virus cases in the United States.


Asunto(s)
Infecciones por Orthomyxoviridae , Thogotovirus , Animales , Modelos Animales de Enfermedad , Variación Genética , Genoma Viral/genética , Inestabilidad Genómica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Filogenia , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/patogenicidad , Thogotovirus/ultraestructura , Garrapatas/virología
2.
J Gen Virol ; 102(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33211641

RESUMEN

From its initial isolation in the USA in 2011 to the present, influenza D virus (IDV) has been detected in cattle and swine populations worldwide. IDV has exceptional thermal and acid stability and a broad host range. The virus utilizes cattle as its natural reservoir and amplification host with periodic spillover to other mammalian species, including swine. IDV infection can cause mild to moderate respiratory illnesses in cattle and has been implicated as a contributor to bovine respiratory disease (BRD) complex, which is the most common and costly disease affecting the cattle industry. Bovine and swine IDV outbreaks continue to increase globally, and there is increasing evidence indicating that IDV may have the potential to infect humans. This review discusses recent advances in IDV biology and epidemiology, and summarizes our current understanding of IDV pathogenesis and zoonotic potential.


Asunto(s)
Infecciones por Orthomyxoviridae/virología , Thogotovirus/fisiología , Animales , Antígenos Virales/genética , Genoma Viral , Humanos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Filogenia , ARN Viral/genética , Thogotovirus/clasificación , Thogotovirus/patogenicidad , Proteínas Virales/genética , Zoonosis Virales/transmisión , Zoonosis Virales/virología
3.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32611750

RESUMEN

Since its detection in swine, influenza D virus (IDV) has been shown to be present in multiple animal hosts, and bovines have been identified as its natural reservoir. However, it remains unclear how IDVs emerge, evolve, spread, and maintain in bovine populations. Through multiple years of virological and serological surveillance in a single order-buyer cattle facility in Mississippi, we showed consistently high seroprevalence of IDVs in cattle and recovered a total of 32 IDV isolates from both healthy and sick animals, including those with antibodies against IDV. Genomic analyses of these isolates along with those isolated from other areas showed that active genetic reassortment occurred in IDV and that five reassortants were identified in the Mississippian facility. Two antigenic groups were identified through antigenic cartography analyses for these 32 isolates and representative IDVs from other areas. Remarkably, existing antibodies could not protect cattle from experimental reinfection with IDV. Additional phenotypic analyses demonstrated variations in growth dynamics and pathogenesis in mice between viruses independent of genomic constellation. In summary, this study suggests that, in addition to epidemiological factors, the ineffectiveness of preexisting immunity and cocirculation of a diverse viral genetic pool could facilitate its high prevalence in animal populations.IMPORTANCE Influenza D viruses (IDVs) are panzootic in multiple animal hosts, but the underlying mechanism is unclear. Through multiple years of surveillance in the same order-buyer cattle facility, 32 IDV isolates were recovered from both healthy and sick animals, including those with evident antibodies against IDV. Active reassortment occurred in the cattle within this facility and in those across other areas, and multiple reassortants cocirculated in animals. These isolates are shown with a large extent of phenotypic diversity in replication efficiency and pathogenesis but little in antigenic properties. Animal experiments demonstrated that existing antibodies could not protect cattle from experimental reinfection with IDV. This study suggests that, in addition to epidemiological factors, limited protection from preexisting immunity against IDVs in cattle herds and cocirculation of a diverse viral genetic pool likely facilitate the high prevalence of IDVs in animal populations.


Asunto(s)
Anticuerpos Antivirales/sangre , Protección Cruzada , Genoma Viral , Infecciones por Orthomyxoviridae/epidemiología , Virus Reordenados/inmunología , Thogotovirus/inmunología , Animales , Bovinos , Monitoreo Epidemiológico , Granjas , Variación Genética , Genotipo , Hospitales Veterinarios , Inmunidad Innata , Ratones , Mississippi/epidemiología , Tipificación Molecular , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Estudios Seroepidemiológicos , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/patogenicidad , Replicación Viral
4.
Emerg Infect Dis ; 25(11): 2074-2080, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625836

RESUMEN

Influenza D virus has been detected predominantly in cattle from several countries. In the United States, regional and state seropositive rates for influenza D have previously been reported, but little information exists to evaluate national seroprevalence. We performed a serosurveillance study with 1,992 bovine serum samples collected across the country in 2014 and 2015. We found a high overall seropositive rate of 77.5% nationally; regional rates varied from 47.7% to 84.6%. Samples from the Upper Midwest and Mountain West regions showed the highest seropositive rates. In addition, seropositive samples were found in 41 of the 42 states from which cattle originated, demonstrating that influenza D virus circulated widely in cattle during this period. The distribution of influenza D virus in cattle from the United States highlights the need for greater understanding about pathogenesis, epidemiology, and the implications for animal health.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Infecciones por Orthomyxoviridae/veterinaria , Thogotovirus , Animales , Bovinos , Enfermedades de los Bovinos/historia , Femenino , Genes Virales , Historia del Siglo XXI , Masculino , Filogenia , Estudios Seroepidemiológicos , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/inmunología , Estados Unidos/epidemiología
5.
Emerg Infect Dis ; 24(6): 1020-1028, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29774857

RESUMEN

Influenza D virus (IDV) has been identified in domestic cattle, swine, camelid, and small ruminant populations across North America, Europe, Asia, South America, and Africa. Our study investigated seroprevalence and transmissibility of IDV in feral swine. During 2012-2013, we evaluated feral swine populations in 4 US states; of 256 swine tested, 57 (19.1%) were IDV seropositive. Among 96 archived influenza A virus-seropositive feral swine samples collected from 16 US states during 2010-2013, 41 (42.7%) were IDV seropositive. Infection studies demonstrated that IDV-inoculated feral swine shed virus 3-5 days postinoculation and seroconverted at 21 days postinoculation; 50% of in-contact naive feral swine shed virus, seroconverted, or both. Immunohistochemical staining showed viral antigen within epithelial cells of the respiratory tract, including trachea, soft palate, and lungs. Our findings suggest that feral swine might serve an important role in the ecology of IDV.


Asunto(s)
Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Thogotovirus , Animales , Femenino , Genotipo , Geografía Médica , Hemaglutinación , Pruebas de Hemaglutinación , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/diagnóstico , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/inmunología , Estados Unidos/epidemiología , Carga Viral , Esparcimiento de Virus , Zoonosis
6.
Emerg Infect Dis ; 23(12): 2017-2022, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29148395

RESUMEN

Bourbon virus (BRBV) was first isolated in 2014 from a resident of Bourbon County, Kansas, USA, who died of the infection. In 2015, an ill Payne County, Oklahoma, resident tested positive for antibodies to BRBV, before fully recovering. We retrospectively tested for BRBV in 39,096 ticks from northwestern Missouri, located 240 km from Bourbon County, Kansas. We detected BRBV in 3 pools of Amblyomma americanum (L.) ticks: 1 pool of male adults and 2 pools of nymphs. Detection of BRBV in A. americanum, a species that is aggressive, feeds on humans, and is abundant in Kansas and Oklahoma, supports the premise that A. americanum is a vector of BRBV to humans. BRBV has not been detected in nonhuman vertebrates, and its natural history remains largely unknown.


Asunto(s)
Anticuerpos Antivirales/sangre , Vectores Arácnidos/virología , Gripe Humana/virología , Ixodidae/virología , Ninfa/virología , ARN Viral/genética , Thogotovirus/genética , Animales , Anticuerpos Antivirales/aislamiento & purificación , Monitoreo Epidemiológico , Humanos , Gripe Humana/diagnóstico , Gripe Humana/inmunología , Kansas , Masculino , Missouri , Filogenia , Filogeografía , Thogotovirus/clasificación , Thogotovirus/aislamiento & purificación , Ensayo de Placa Viral
8.
J Virol ; 89(2): 1036-42, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25355894

RESUMEN

UNLABELLED: Viruses with approximately 50% homology to human influenza C virus (ICV) have recently been isolated from swine and cattle. The overall low homology to ICV, lack of antibody cross-reactivity to ICV in hemagglutination inhibition (HI) and agar gel immunodiffusion assays, and inability to productively reassort with ICV led to the proposal that these viruses represented a new genus of influenza virus, influenzavirus D (IDV). To further our understanding of the epidemiology of IDV, real-time reverse transcription-PCR was performed on a set of 208 samples from bovines with respiratory disease. Ten samples (4.8%) were positive and six viruses were successfully isolated in vitro. Phylogenetic analysis of full-genome sequences of these six new viruses and four previously reported viruses revealed two distinct cocirculating lineages represented by D/swine/Oklahoma/1334/2011 (D/OK) and D/bovine/Oklahoma/660/2013 (D/660), which frequently reassorted with one another. Antigenic analysis using the HI assay and lineage-representative D/OK and D/660 antiserum found up to an approximate 10-fold loss in cross-reactivity against heterologous clade antiserum. One isolate, D/bovine/Texas/3-13/2011 (D/3-13), clustered with the D/660 lineage, but also had high HI titers to heterologous (D/OK) clade antiserum. Molecular modeling of the hemagglutinin esterase fusion protein of D/3-13 identified a mutation at position 212 as a possible antigenic determinant responsible for the discrepant HI results. These results suggest that IDV is common in bovines with respiratory disease and that at least two genetic and antigenically distinct clades cocirculate. IMPORTANCE: A novel bovine influenza virus was recently identified. Detailed genetic and antigenic studies led to the proposal that this virus represents a new genus of influenza, influenzavirus D (IDV). Here, we show that IDV is common in clinical samples of bovine respiratory disease complex (BRDC), with a prevalence similar to that of other established BRDC etiological agents. These results are in good agreement with the near-ubiquitous seroprevalence of IDV previously found. Phylogenetic analysis of complete genome sequences found evidence for two distinct cocirculating lineages of IDV which freely reassort. Significant antigenic differences, which generally agreed with the surface glycoprotein hemagglutinin esterase phylogeny, were observed between the two lineages. Based on these results, and on the ability of IDV to infect and transmit in multiple mammalian species, additional studies to determine the pathogenic potential of IDV are warranted.


Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones del Sistema Respiratorio/veterinaria , Thogotovirus/clasificación , Thogotovirus/genética , Animales , Anticuerpos Antivirales/inmunología , Bovinos , Análisis por Conglomerados , Reacciones Cruzadas , Esterasas/genética , Genoma Viral , Genotipo , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/virología , Filogenia , Mutación Puntual , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/inmunología , Virus Reordenados/aislamiento & purificación , Infecciones del Sistema Respiratorio/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Thogotovirus/inmunología , Thogotovirus/aislamiento & purificación
9.
Emerg Infect Dis ; 21(2): 368-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25628038

RESUMEN

A new influenza virus, genus D, isolated in US pigs and cattle, has also been circulating in cattle in France. It was first identified there in 2011, and an increase was detected in 2014. The virus genome in France is 94%-99% identical to its US counterpart, which suggests intercontinental spillover.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Infecciones por Orthomyxoviridae/veterinaria , Thogotovirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/historia , Francia/epidemiología , Genes Virales , Genoma Viral , Historia del Siglo XXI , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , Thogotovirus/clasificación
10.
Emerg Infect Dis ; 21(5): 760-4, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25899080

RESUMEN

A previously healthy man from eastern Kansas, USA, sought medical care in late spring because of a history of tick bite, fever, and fatigue. The patient had thrombocytopenia and leukopenia and was given doxycycline for a presumed tickborne illness. His condition did not improve. Multiorgan failure developed, and he died 11 days after illness onset from cardiopulmonary arrest. Molecular and serologic testing results for known tickborne pathogens were negative. However, testing of a specimen for antibodies against Heartland virus by using plaque reduction neutralization indicated the presence of another virus. Next-generation sequencing and phylogenetic analysis identified the virus as a novel member of the genus Thogotovirus.


Asunto(s)
Fiebre/diagnóstico , Fiebre/virología , Gripe Humana/diagnóstico , Gripe Humana/virología , Thogotovirus/clasificación , Thogotovirus/genética , Autopsia , Resultado Fatal , Fiebre/tratamiento farmacológico , Fiebre/epidemiología , Genoma Viral , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Kansas/epidemiología , Masculino , Persona de Mediana Edad , Filogenia , ARN Viral , Thogotovirus/aislamiento & purificación , Thogotovirus/ultraestructura
11.
J Gen Virol ; 96(8): 2099-2103, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25957096

RESUMEN

Ticks transmit viruses responsible for severe emerging and re-emerging infectious diseases, some of which have a significant impact on public health. In Japan, little is known about the distribution of tick-borne viruses. In this study, we collected and tested ticks to investigate the distribution of tick-borne arboviruses in Kyoto, Japan, and isolated the first Thogoto virus (THOV) to our knowledge from Haemaphysalis longicornis in far-eastern Asia. The Japanese isolate was genetically distinct from a cluster of other isolates from Africa, Europe and the Middle East. Various cell lines derived from mammals and ticks were susceptible to the isolate, but it was not pathogenic in mice. These results advance understanding of the distribution and ecology of THOV.


Asunto(s)
Vectores Arácnidos/virología , Ixodidae/virología , Thogotovirus/aislamiento & purificación , Enfermedades por Picaduras de Garrapatas/virología , Animales , Femenino , Humanos , Japón , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Thogotovirus/clasificación , Thogotovirus/genética , Enfermedades por Picaduras de Garrapatas/transmisión
12.
J Virol ; 88(10): 5298-309, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574415

RESUMEN

UNLABELLED: Emerging and zoonotic pathogens pose continuing threats to human health and ongoing challenges to diagnostics. As nucleic acid tests are playing increasingly prominent roles in diagnostics, the genetic characterization of molecularly uncharacterized agents is expected to significantly enhance detection and surveillance capabilities. We report the identification of two previously unrecognized members of the family Orthomyxoviridae, which includes the influenza viruses and the tick-transmitted Thogoto and Dhori viruses. We provide morphological, serologic, and genetic evidence that Upolu virus (UPOV) from Australia and Aransas Bay virus (ABV) from North America, both previously considered potential bunyaviruses based on electron microscopy and physicochemical features, are orthomyxoviruses instead. Their genomes show up to 68% nucleotide sequence identity to Thogoto virus (segment 2; ∼74% at the amino acid level) and a more distant relationship to Dhori virus, the two prototype viruses of the recognized species of the genus Thogotovirus. Despite sequence similarity, the coding potentials of UPOV and ABV differed from that of Thogoto virus, instead being like that of Dhori virus. Our findings suggest that the tick-transmitted viruses UPOV and ABV represent geographically distinct viruses in the genus Thogotovirus of the family Orthomyxoviridae that do not fit in the two currently recognized species of this genus. IMPORTANCE: Upolu virus (UPOV) and Aransas Bay virus (ABV) are shown to be orthomyxoviruses instead of bunyaviruses, as previously thought. Genetic characterization and adequate classification of agents are paramount in this molecular age to devise appropriate surveillance and diagnostics. Although more closely related to Thogoto virus by sequence, UPOV and ABV differ in their coding potentials by lacking a proposed pathogenicity factor. In this respect, they are similar to Dhori virus, which, despite the lack of a pathogenicity factor, can cause disease. These findings enable further studies into the evolution and pathogenicity of orthomyxoviruses.


Asunto(s)
Thogotovirus/clasificación , Thogotovirus/genética , Animales , Australia , Fenómenos Químicos , Análisis por Conglomerados , Humanos , Microscopía Electrónica de Transmisión , América del Norte , Filogenia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Serotipificación , Thogotovirus/inmunología , Thogotovirus/ultraestructura , Garrapatas/virología
13.
Emerg Microbes Infect ; 13(1): 2343907, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38738553

RESUMEN

Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Orthomyxoviridae , Filogenia , Thogotovirus , Animales , China/epidemiología , Bovinos , Thogotovirus/genética , Thogotovirus/clasificación , Thogotovirus/aislamiento & purificación , Thogotovirus/inmunología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/transmisión , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/transmisión , Cabras , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Anticuerpos Antivirales/sangre , Humanos , Deltainfluenzavirus
14.
Influenza Other Respir Viruses ; 18(6): e13345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923307

RESUMEN

BACKGROUND: Influenza viruses can cause zoonotic infections that pose public health risks. Surveillance of influenza A and B viruses is conducted globally; however, information on influenza C and D viruses is limited. Longitudinal monitoring of influenza C virus in humans has been conducted in several countries, but there has been no long-term monitoring of influenza D virus in humans. The public health risks associated with the influenza D virus therefore remain unknown. METHODS: We established a duplex real-time RT-PCR to detect influenza C and D viruses and analyzed respiratory specimens collected from 2144 patients in Japan with respiratory diseases between January 2018 and March 2023. We isolated viruses and conducted hemagglutination inhibition tests to examine antigenicity and focus reduction assays to determine susceptibility to the cap-dependent endonuclease inhibitor baloxavir marboxil. RESULTS: We detected three influenza C viruses belonging to the C/Kanagawa- or C/Sao Paulo-lineages, which recently circulated globally. None of the specimens was positive for the influenza D virus. The C/Yokohama/1/2022 strain, isolated from the specimen with the highest viral RNA load and belonging to the C/Kanagawa-lineage, showed similar antigenicity to the reference C/Kanagawa-lineage strain and was susceptible to baloxavir. CONCLUSIONS: Our duplex real-time RT-PCR is useful for the simultaneous detection of influenza C and D viruses from the same specimen. Adding the influenza D virus to the monitoring of the influenza C virus would help in assessing the public health risks posed by this virus.


Asunto(s)
Dibenzotiepinas , Gammainfluenzavirus , Gripe Humana , Piridonas , Triazinas , Humanos , Japón/epidemiología , Gripe Humana/virología , Gripe Humana/epidemiología , Triazinas/farmacología , Masculino , Femenino , Gammainfluenzavirus/aislamiento & purificación , Gammainfluenzavirus/genética , Persona de Mediana Edad , Adulto , Anciano , Antivirales/uso terapéutico , Antivirales/farmacología , Morfolinas , Pruebas de Inhibición de Hemaglutinación , Preescolar , Niño , Adolescente , Adulto Joven , Thogotovirus/genética , Thogotovirus/aislamiento & purificación , Thogotovirus/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Lactante , Anciano de 80 o más Años
15.
J Gen Virol ; 93(Pt 2): 293-298, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21994326

RESUMEN

Jos virus (JOSV), originally isolated in Jos, Nigeria in 1967, has remained unclassified despite cultivation in tissue culture, development of animal models of infection and implementation of seroprevalence surveys for infection. Here, we report genetic, ultrastructural and serological evidence that JOSV is an orthomyxovirus distinct from but phylogenetically related to viruses of the genus Thogotovirus.


Asunto(s)
Antígenos Virales/inmunología , Genoma Viral , Thogotovirus/genética , Thogotovirus/inmunología , Proteínas Virales/inmunología , Animales , Análisis por Conglomerados , Ratones , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Nigeria , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Thogotovirus/clasificación , Thogotovirus/ultraestructura , Virión/ultraestructura
16.
Vet Microbiol ; 264: 109298, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34906835

RESUMEN

The influenza D virus (IDV) uses a trimeric hemagglutinin-esterase fusion protein (HEF) for attachment to 9-O-acetylated sialic acid receptors on the cell surface of host species. So far research has revealed that farm animals such as cattle, domestic pigs, goats, sheep and horses contain the necessary receptors on the epithelial surface of the respiratory tract to accommodate binding of the IDV HEF protein of both worldwide clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660). More recently, seroprevalence studies have identified IDV-seropositive wildlife such as wild boar, deer, dromedaries, and small ruminants. However, no research has thus far been conducted in wildlife to reveal the distribution of acetylated sialic acid receptors that accommodate binding of IDV. Using our previously developed tissue microarray (TMA) system, we developed TMAs containing respiratory tissues of various wild and domestic species including wild boar, deer, dromedary, springbok, water buffalo, tiger, hedgehog, and Asian elephant. Protein histochemical staining of these TMAs with HEF proteins showed no receptor binding for wild Suidae, Cervidae and tiger. However, receptors were present in dromedary, springbok, water buffalo, Asian elephant, and hedgehog. In contrast to previously tested farm animals, a difference in host tropism was observed between the D/OK and D/660 clade HEF proteins in Asian elephant, and water buffalo. These results show that IDV can attach to the respiratory tract of wildlife which might facilitate transmission of IDV between wildlife and domestic animals.


Asunto(s)
Infecciones por Orthomyxoviridae , Receptores de Superficie Celular , Thogotovirus , Animales , Animales Domésticos/virología , Animales Salvajes/virología , Bovinos , Ciervos , Caballos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Receptores de Superficie Celular/inmunología , Estudios Seroepidemiológicos , Ovinos , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/metabolismo
17.
Transbound Emerg Dis ; 69(3): 1227-1245, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33764631

RESUMEN

BACKGROUND: Influenza D virus (IDV), a segmented single-stranded negative-sense ribonucleic acid (RNA) virus, belongs to the new Delta influenza virus genus of the Orthomyxoviridae family. Cattle were proposed as the natural reservoir of IDV in which infection was associated with mild-to-moderate respiratory clinical signs (i.e. cough, nasal discharge and dyspnoea). METHODS AND PRINCIPAL FINDINGS: In order to investigate the role of IDV in bovine respiratory disease, during the period 2017-2020, 883 nasal or naso-pharyngeal swabs from Canadian cattle with respiratory signs (cough and/or dyspnoea) were tested by (RT-)qPCR for IDV and other major bovine viral (bovine herpesvirus 1, bovine viral diarrhoea virus, bovine respiratory syncytial virus, bovine parainfluenza virus 3 and bovine coronavirus) and bacterial (Mannheimia haemolytica, Pasteurella multocida, Histophilus somni and Mycoplasma bovis) respiratory pathogens. In addition, whole-genome sequencing and phylogenetic analyses were carried out on five IDV-positive samples. The prevalence of IDV RT-qPCR (with cut-off: Cq < 38) at animal level was estimated at 5.32% (95% confidence interval: 3.94-7.02). Positive result of IDV was significantly associated with (RT-)qPCR-positive results for bovine respiratory syncytial virus and Mycoplasma bovis. While phylogenetic analyses indicate that most segments belonged to clade D/660, reassortment between clades D/660 and D/OK were evidenced in four samples collected in 2018-2020. CONCLUSIONS AND SIGNIFICANCE: Relative importance of influenza D virus and associated pathogens in bovine respiratory disease of Canadian dairy cattle was established. Whole-genome sequencing demonstrated evidence of reassortment between clades D/660 and D/OK. Both these new pieces of information claim for more surveillance of IDV in cattle production worldwide.


Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades Respiratorias/veterinaria , Thogotovirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Tos/veterinaria , Reservorios de Enfermedades , Disnea/veterinaria , Mucosa Nasal/virología , Nasofaringe/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Quebec/epidemiología , Virus Reordenados/genética , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/virología , Thogotovirus/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA