Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Nucleic Acids Res ; 49(16): 9594-9605, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34390349

RESUMEN

Protein evolution has significantly enhanced the development of life science. However, it is difficult to achieve in vitro evolution of some special proteins because of difficulties with heterologous expression, purification, and function detection. To achieve protein evolution via in situ mutation in vivo, we developed a base editor by fusing nCas with a cytidine deaminase in Bacillus subtilis through genome integration. The base editor introduced a cytidine-to-thymidine mutation of approximately 100% across a 5 nt editable window, which was much higher than those of other base editors. The editable window was expanded to 8 nt by extending the length of sgRNA, and conversion efficiency could be regulated by changing culture conditions, which was suitable for constructing a mutant protein library efficiently in vivo. As proof-of-concept, the Sec-translocase complex and bacitracin-resistance-related protein BceB were successfully evolved in vivo using the base editor. A Sec mutant with 3.6-fold translocation efficiency and the BceB mutants with different sensitivity to bacitracin were obtained. As the construction of the base editor does not rely on any additional or host-dependent factors, such base editors (BEs) may be readily constructed and applicable to a wide range of bacteria for protein evolution via in situ mutation.


Asunto(s)
Bacillus subtilis/genética , Citidina Desaminasa/genética , Evolución Molecular , Proteínas/genética , Sistemas CRISPR-Cas/genética , Citidina/genética , Edición Génica , Genoma Bacteriano/genética , Inestabilidad Genómica/genética , Mutación/genética , Timidina/genética
2.
Ann Neurol ; 90(4): 640-652, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34338329

RESUMEN

OBJECTIVE: Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS: We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS: AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION: Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021;90:640-652.


Asunto(s)
Terapia Genética , Mitocondrias/metabolismo , Miopatías Mitocondriales/terapia , Timidina Quinasa/deficiencia , Animales , Ensayos de Uso Compasivo , ADN Mitocondrial/genética , Humanos , Ratones , Mitocondrias/genética , Miopatías Mitocondriales/genética , Mutación/genética , Timidina/genética , Timidina/metabolismo , Timidina Quinasa/genética
3.
Nucleic Acids Res ; 48(17): 9462-9477, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32821942

RESUMEN

CRISPR/Cas9 functional genomic screens have emerged as essential tools in drug target discovery. However, the sensitivity of available genome-wide CRISPR libraries is impaired by guides which inefficiently abrogate gene function. While Cas9 cleavage efficiency optimization and essential domain targeting have been developed as independent guide design rationales, no library has yet combined these into a single cohesive strategy to knock out gene function. Here, in a massive reanalysis of CRISPR tiling data using the most comprehensive feature database assembled, we determine which features of guides and their targets best predict activity and how to best combine them into a single guide design algorithm. We present the ProteIN ConsERvation (PINCER) genome-wide CRISPR library, which for the first time combines enzymatic efficiency optimization with conserved length protein region targeting, and also incorporates domains, coding sequence position, U6 termination (TTT), restriction sites, polymorphisms and specificity. Finally, we demonstrate superior performance of the PINCER library compared to alternative genome-wide CRISPR libraries in head-to-head validation. PINCER is available for individual gene knockout and genome-wide screening for both the human and mouse genomes.


Asunto(s)
Algoritmos , Sistemas CRISPR-Cas , Bases de Datos Genéticas , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Línea Celular , Secuencia Conservada , Enzimas/genética , Enzimas/metabolismo , Genoma , Biblioteca Genómica , Humanos , Ratones , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados , Timidina/genética
4.
Nucleic Acids Res ; 48(22): 12556-12565, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33270863

RESUMEN

The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, 'chair-like' G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.


Asunto(s)
Aptámeros de Nucleótidos/genética , G-Cuádruplex , Unión Proteica/genética , Trombina/genética , Anticoagulantes/química , Anticoagulantes/uso terapéutico , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Estereoisomerismo , Timidina/genética
5.
Nucleic Acids Res ; 48(15): e88, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32710620

RESUMEN

DNA synthesis is a fundamental requirement for cell proliferation and DNA repair, but no single method can identify the location, direction and speed of replication forks with high resolution. Mammalian cells have the ability to incorporate thymidine analogs along with the natural A, T, G and C bases during DNA synthesis, which allows for labeling of replicating or repaired DNA. Here, we demonstrate the use of the Oxford Nanopore Technologies MinION to detect 11 different thymidine analogs including CldU, BrdU, IdU as well as EdU alone or coupled to Biotin and other bulky adducts in synthetic DNA templates. We also show that the large adduct Biotin can be distinguished from the smaller analog IdU, which opens the possibility of using analog combinations to identify the location and direction of DNA synthesis. Furthermore, we detect IdU label on single DNA molecules in the genome of mouse pluripotent stem cells and using CRISPR/Cas9-mediated enrichment, determine replication rates using newly synthesized DNA strands in human mitochondrial DNA. We conclude that this novel method, termed Replipore sequencing, has the potential for on target examination of DNA replication in a wide range of biological contexts.


Asunto(s)
Bromodesoxiuridina/química , Secuenciación de Nanoporos , Timidina/genética , Animales , Biotina/química , Biotina/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Nanoporos , Timidina/química
6.
Anal Chem ; 93(2): 1161-1169, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33290046

RESUMEN

O2- and O4-alkylated thymidine lesions are known to be poorly repaired and persist in mammalian tissues. To understand how mammalian cells sense the presence and regulate the repair of these lesions, we employed a quantitative proteomic method to discover regioisomeric O2- and O4-n-butylthymidine (O2- and O4-nBudT)-binding proteins. We were able to identify 21 and 74 candidate DNA damage recognition proteins for O2-nBudT- and O4-nBudT-bearing DNA probes, respectively. Among these proteins, DDB1 and DDB2 selectively bind to O2-nBudT-containing DNA, whereas three high-mobility group (HMG) proteins (i.e., HMGB1, HMGB2, and mitochondrial transcription factor A (TFAM)) exhibit preferential binding to O4-nBudT-bearing DNA. We further demonstrated that TFAM binds directly and selectively with O4-alkyldT-harboring DNA, and the binding capacity depends mainly on the HMG box-A domain of TFAM. We also found that TFAM promotes transcriptional mutagenesis of O4-nBudT and O4-pyridyloxobutylthymidine, which is a DNA adduct induced by tobacco-specific N-nitrosamines, in vitro and in human cells. Together, we explored, for the first time, the interaction proteomes of O-alkyldT lesions, and our study expanded the functions of TFAM by revealing its capability in the recognition of O4-alkyldT-bearing DNA and uncovering its modulation of transcriptional mutagenesis of these lesions in human cells.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Mitocondriales/química , Timidina/análogos & derivados , Factores de Transcripción/química , Sitios de Unión , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Estructura Molecular , Mutación , Timidina/química , Timidina/genética , Timidina/metabolismo , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 47(19): 10296-10312, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31495891

RESUMEN

Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN/química , Transcripción Genética/efectos de los fármacos , Uridina/análogos & derivados , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Oxígeno/química , Pseudomonas/química , ARN/genética , División del ARN/efectos de los fármacos , Streptomyces/química , Especificidad por Sustrato , Timidina/química , Timidina/genética , Transcripción Genética/genética , Factores de Elongación Transcripcional/genética , Uracilo/química , Uridina/síntesis química , Uridina/química , Uridina/farmacología
8.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208896

RESUMEN

In this paper, we report our investigations on five T30175 analogues, prepared by replacing sequence thymidines with abasic sites (S) one at a time, in comparison to their natural counterpart in order to evaluate their antiproliferative potential and the involvement of the residues not belonging to the central core of stacked guanosines in biological activity. The collected NMR (Nuclear Magnetic Resonance), CD (Circular Dichroism), and PAGE (Polyacrylamide Gel Electrophoresis) data strongly suggest that all of them adopt G-quadruplex (G4) structures strictly similar to that of the parent aptamer with the ability to fold into a dimeric structure composed of two identical G-quadruplexes, each characterized by parallel strands, three all-anti-G-tetrads and four one-thymidine loops (one bulge and three propeller loops). Furthermore, their antiproliferative (MTT assay) and anti-motility (wound healing assay) properties against lung and colorectal cancer cells were tested. Although all of the oligodeoxynucleotides (ODNs) investigated here exhibited anti-proliferative activity, the unmodified T30175 aptamer showed the greatest effect on cell growth, suggesting that both its characteristic folding in dimeric form and its presence in the sequence of all thymidines are crucial elements for antiproliferative activity. This straightforward approach is suitable for understanding the critical requirements of the G-quadruplex structures that affect antiproliferative potential and suggests its application as a starting point to facilitate the reasonable development of G-quadruplexes with improved anticancer properties.


Asunto(s)
Antineoplásicos/química , Aptámeros de Nucleótidos/química , Neoplasias Colorrectales/genética , Neoplasias Pulmonares/genética , Timidina/genética , Sustitución de Aminoácidos , Antineoplásicos/farmacología , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dicroismo Circular , Neoplasias Colorrectales/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , G-Cuádruplex , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Espectroscopía de Resonancia Magnética
9.
Nucleic Acids Res ; 46(18): 9764-9775, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102387

RESUMEN

Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2'-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2'-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2'O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.


Asunto(s)
Inmunidad Innata/genética , Ácidos Nucleicos/inmunología , ARN de Transferencia/inmunología , Receptor Toll-Like 7/genética , Guanosina/química , Guanosina/inmunología , Humanos , Hidrógeno/química , Interferones/genética , Leucocitos Mononucleares/química , Leucocitos Mononucleares/inmunología , Metilación , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , ARN de Transferencia/genética , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Receptor Toll-Like 7/inmunología
10.
Genes Cells ; 21(8): 907-14, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27353572

RESUMEN

Although the speed of nascent DNA synthesis at individual replication forks is relatively uniform in bacterial cells, the dynamics of replication fork progression on the chromosome are hampered by a variety of natural impediments. Genome replication dynamics can be directly measured from an exponentially growing cell population by sequencing newly synthesized DNA strands that were specifically pulse-labeled with the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU). However, a short pulse labeling with BrdU is impracticable for bacteria because of poor incorporation of BrdU into the cells, and thus, the genomewide dynamics of bacterial DNA replication remain undetermined. Using a new thymidine-requiring Escherichia coli strain, eCOMB, and high-throughput sequencing, we succeeded in determining the genomewide replication profile in bacterial cells. We also found that fork progression is paused in two ~200-kb chromosomal zones that flank the replication origin in the growing cells. This origin-proximal obstruction to fork progression was overcome by an increased thymidine concentration in the culture medium and enhanced by inhibition of transcription. These indicate that DNA replication near the origin is sensitive to the impediments to fork progression, namely a scarcity of the DNA precursor deoxythymidine triphosphate and probable conflicts between replication and transcription machineries.


Asunto(s)
Replicación del ADN/genética , Origen de Réplica/genética , Transcripción Genética , Bromodesoxiuridina , Cromosomas Bacterianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Timidina/genética
11.
J Antimicrob Chemother ; 72(5): 1450-1455, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28160504

RESUMEN

Background: Lack of viral load monitoring of ART is known to be associated with slower switch from a failing regimen and thereby higher prevalence of MDR HIV-1. Many countries have continued to use thymidine analogue drugs despite recommendations to use tenofovir in combination with a cytosine analogue and NNRTI as first-line ART. The effect of accumulated thymidine analogue mutations (TAMs) on phenotypic resistance over time has been poorly characterized in the African setting. Patients and methods: A retrospective analysis of individuals with ongoing viral failure between weeks 48 and 96 in the NORA (Nevirapine OR Abacavir) study was conducted. We analysed 36 genotype pairs from weeks 48 and 96 of first-line ART (14 treated with zidovudine/lamivudine/nevirapine and 22 treated with zidovudine/lamivudine/abacavir). Phenotypic drug resistance was assessed using the Antivirogram assay (v. 2.5.01, Janssen Diagnostics). Results: At 96 weeks, extensive TAMs (≥3 mutations) were present in 50% and 73% of nevirapine- and abacavir-treated patients, respectively. The mean (SE) number of TAMs accumulating between week 48 and week 96 was 1.50 (0.37) in nevirapine-treated participants and 1.82 (0.26) in abacavir-treated participants. Overall, zidovudine susceptibility of viruses was reduced between week 48 [geometric mean fold change (FC) 1.3] and week 96 (3.4, P = 0.01). There was a small reduction in tenofovir susceptibility (FC 0.7 and 1.0, respectively, P = 0.18). Conclusions: Ongoing viral failure with zidovudine-containing first-line ART is associated with rapidly increasing drug resistance that could be mitigated with effective viral load monitoring.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , VIH-1/genética , Mutación , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Timidina/análogos & derivados , Zidovudina/uso terapéutico , Adulto , África del Sur del Sahara/epidemiología , Terapia Antirretroviral Altamente Activa/efectos adversos , Recuento de Linfocito CD4 , Didesoxinucleósidos/uso terapéutico , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Lamivudine/uso terapéutico , Masculino , Nevirapina/uso terapéutico , Reacción en Cadena de la Polimerasa , ARN Viral/sangre , Estudios Retrospectivos , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Timidina/genética , Insuficiencia del Tratamiento , Carga Viral/efectos de los fármacos , Carga Viral/métodos , Zidovudina/administración & dosificación
12.
Bioorg Med Chem ; 25(20): 5598-5602, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28927804

RESUMEN

Oxidative events that take place during regular oxygen metabolism can lead to the formation of organic or inorganic radicals. The interaction of these radicals with macromolecules in the organism and with DNA in particular is suspected to lead to apoptosis, DNA lesions and cell damage. Independent generation of DNA lesions resulting from oxidative damage is used to promote the study of their effects on biological systems. An efficient synthesis of oligodeoxyribonucleotides (ODNs) containing the oxidative damage lesion 3'-oxothymidine has been accomplished via incorporation of C3'-hydroxymethyl thymidine as its corresponding 5'-phosphoramidite. Through oxidative cleavage using sodium periodate in aqueous solution, the lesion of interest is easily generated. Due to its inherent instability it cannot be directly isolated, but must be generated in situ. 3'-Oxothymidine is a demonstrated damage product formed upon generation of the C3'-thymidinyl radical in ODN.


Asunto(s)
Daño del ADN , Oligodesoxirribonucleótidos/genética , Timidina/genética , Inestabilidad Genómica , Estructura Molecular , Oligodesoxirribonucleótidos/síntesis química , Oxidación-Reducción , Ácido Peryódico/química , Timidina/química
13.
J Biol Chem ; 290(2): 775-87, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25391658

RESUMEN

DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.


Asunto(s)
Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias/metabolismo , Péptidos/genética , Timidina/genética , Química Clic , Aductos de ADN/química , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN , Humanos , Cinética , Neoplasias/patología , Péptidos/química , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem , Timidina/química
14.
J Am Chem Soc ; 138(23): 7272-5, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27213685

RESUMEN

Prokaryotic and eukaryotic genomic DNA is comprised of the four building blocks A, G, C, and T. We have begun to explore the consequences of replacing a large fraction or all of a nucleoside in genomic DNA with a modified nucleoside. As a first step we have investigated the possibility of replacement of T by 2'-deoxy-5-(hydroxymethyl)uridine (5hmU) in the genomic DNA of Escherichia coli. Metabolic engineering with phage genes followed by random mutagenesis enabled us to achieve approximately 75% replacement of T by 5hmU in the E. coli genome and in plasmids.


Asunto(s)
Escherichia coli/genética , Ingeniería Genética/métodos , Genoma Bacteriano , Timidina/análogos & derivados , Timidina/genética , Secuencia de Bases , ADN Bacteriano/genética , Plásmidos/genética
15.
Chem Res Toxicol ; 29(4): 669-75, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27002924

RESUMEN

Environmental exposure and endogenous metabolism can give rise to DNA alkylation. Among alkylated nucleosides, O(4)-alkylthymidine (O(4)-alkyldT) lesions are poorly repaired in mammalian systems and may compromise the efficiency and fidelity of cellular DNA replication. To cope with replication-stalling DNA lesions, cells are equipped with translesion synthesis DNA polymerases that are capable of bypassing various DNA lesions. In this study, we assessed human DNA polymerase η (Pol η)-mediated bypass of various O(4)-alkyldT lesions, with the alkyl group being Me, Et, nPr, iPr, nBu, iBu, (R)-sBu, or (S)-sBu, in template DNA by conducting primer extension and steady-state kinetic assays. Our primer extension assay results revealed that human Pol η, but not human polymerases κ and ι or yeast polymerase ζ, was capable of bypassing all O(4)-alkyldT lesions and extending the primer to generate full-length replication products. Data from steady-state kinetic measurements showed that Pol η preferentially misincorporated dGMP opposite O(4)-alkyldT lesions with a straight-chain alkyl group. The nucleotide misincorporation opposite most lesions with a branched-chain alkyl group was, however, not selective, where dCMP, dGMP, and dTMP were inserted at similar efficiencies opposite O(4)-iPrdT, O(4)-iBudT, and O(4)-(R)-sBudT. These results provide important knowledge about the effects of the length and structure of the alkyl group in O(4)-alkyldT lesions on the fidelity and efficiency of DNA replication mediated by human Pol η.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Timidina/análogos & derivados , Timidina/metabolismo , Alquilación , ADN/química , ADN/genética , Daño del ADN , Reparación del ADN , Replicación del ADN , Humanos , Cinética , Proteínas Recombinantes/metabolismo , Timidina/genética
16.
BMC Genomics ; 15: 354, 2014 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-24885922

RESUMEN

BACKGROUND: Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria.Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. RESULTS: By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). CONCLUSIONS: The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well.


Asunto(s)
Genoma , Toxoplasma/genética , Adenosina/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Emparejamiento Base , Línea Celular , Metanosulfonato de Etilo/toxicidad , Etilnitrosourea/toxicidad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Datos de Secuencia Molecular , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Fenotipo , Mutación Puntual , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Timidina/genética , Timidina/metabolismo , Toxoplasma/efectos de los fármacos
17.
J Biol Chem ; 287(24): 19886-95, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22514282

RESUMEN

We have recently demonstrated that O-linked glucosylation of thymine in trypanosome DNA (base J) regulates polymerase II transcription initiation. In vivo analysis has indicated that base J synthesis is initiated by the hydroxylation of thymidine by proteins (JBP1 and JBP2) homologous to the Fe(2+)/2-oxoglutarate (2-OG)-dependent dioxygenase superfamily where hydroxylation is driven by the oxidative decarboxylation of 2-OG, forming succinate and CO(2). However, no direct evidence for hydroxylase activity has been reported for the JBP proteins. We now demonstrate recombinant JBP1 hydroxylates thymine specifically in the context of dsDNA in a Fe(2+)-, 2-OG-, and O(2)-dependent manner. Under anaerobic conditions, the addition of Fe(2+) to JBP1/2-OG results in the formation of a broad absorption spectrum centered at 530 nm attributed to metal chelation of 2-OG bound to JBP, a spectroscopic signature of Fe(2+)/2-OG-dependent dioxygenases. The N-terminal thymidine hydroxylase domain of JBP1 is sufficient for full activity and mutation of residues involved in coordinating Fe(2+) inhibit iron binding and thymidine hydroxylation. Hydroxylation in vitro and J synthesis in vivo is inhibited by known inhibitors of Fe(2+)/2-OG-dependent dioxygenases. The data clearly demonstrate the JBP enzymes are dioxygenases acting directly on dsDNA, confirming the two-step J synthesis model. Growth of trypanosomes in hypoxic conditions decreases JBP1 and -2 activity, resulting in reduced levels of J and changes in parasite virulence previously characterized in the JBP KO. The influence of environment upon J biosynthesis via oxygen-sensitive regulation of JBP1/2 has exciting implications for the regulation of gene expression and parasite adaptation to different host niches.


Asunto(s)
ADN Protozoario/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Proteínas Protozoarias/metabolismo , Timidina/metabolismo , Trypanosoma cruzi/enzimología , ADN Protozoario/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Hidroxilación/fisiología , Hierro/metabolismo , Proteínas Protozoarias/genética , Timidina/genética , Trypanosoma cruzi/genética
18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 247-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23385460

RESUMEN

Rcl is a novel N-glycoside hydrolase found in mammals that shows specificity for the hydrolysis of 5'-monophosphate nucleotides. Its role in nucleotide catabolism and the resulting production of 2-deoxyribose 5-phosphate has suggested that it might fuel cancer growth. Its expression is regulated by c-Myc, but its role as an oncoprotein remains to be clarified. In parallel, various nucleosides have been shown to acquire pro-apoptotic properties upon 5'-monophosphorylation in cells. These include triciribine, a tricyclic nucleoside analogue that is currently in clinical trials in combination with a farnesyltransferase inhibitor. Similarly, an N(6)-alkyl-AMP has been shown to be cytotoxic. Interestingly, Rcl has been shown to be inhibited by such compounds in vitro. In order to gain better insight into the precise ligand-recognition determinants, the crystallization of Rcl with these nucleotide analogues was attempted. The first crystal structure of Rcl was solved by molecular replacement using its NMR structure in combination with distantly related crystal structures. The structures of Rcl bound to two other nucleotides were then solved by molecular replacement using the previous crystal structure as a template. The resulting structures, solved at high resolution, led to a clear characterization of the protein-ligand interactions that will guide further rational drug design.


Asunto(s)
N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Nucleótidos/química , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Acenaftenos/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Cristalización , Ligandos , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/genética , Nucleótidos/genética , Proteínas Oncogénicas/genética , Organofosfonatos/química , Fosforilación , Unión Proteica/genética , Mapeo de Interacción de Proteínas/métodos , Ratas , Ribonucleótidos/química , Ribonucleótidos/genética , Tionucleótidos/química , Tionucleótidos/genética , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Difracción de Rayos X
19.
J Antimicrob Chemother ; 68(10): 2192-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23749954

RESUMEN

OBJECTIVES: We recently reported the preferential selection of the K65R resistance mutation in subtype C HIV-1 compared with subtype B and showed the underlying mechanism to be dependent on subtype C-specific silent nucleotide polymorphisms, i.e. genomic mutations that change the genotype but not the phenotype. The number of clinical reports demonstrating elevated numbers of K65R nevertheless suggests the existence of factors limiting the increased incidence of K65R mutations. Thus, we investigated the contributions of subtype C-specific silent nucleotide polymorphisms at thymidine analogue mutation (TAM) sites 70, 210 and/or 219 that might reduce the previously described preferential selection of K65R in subtype C HIV-1 associated with subtype C-specific nucleotide polymorphisms at sites 64/65. METHODS: Cell culture drug selections were performed with various drugs in MT2 cells. RESULTS: The use of nucleoside/nucleotide reverse transcriptase inhibitors [N(t)RTIs] as single drugs or in combination confirmed the more frequent selection of K65R by multiple N(t)RTIs in a subtype B virus that contained the 64/65 nucleotide polymorphisms of subtype C than in a wild-type subtype B virus. This effect was attenuated in the presence of several silent TAM nucleotide polymorphisms, except when stavudine was employed in the selection protocol. CONCLUSIONS: These results further demonstrate that stavudine can preferentially select for K65R in subtype C virus and also provide a basis for understanding the importance of silent nucleotide polymorphisms in regard to altered HIV drug resistance profiles.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral , Infecciones por VIH/virología , VIH-1/genética , Mutación Missense , Polimorfismo Genético , Timidina/genética , Línea Celular , Genotipo , VIH-1/aislamiento & purificación , Humanos , Inhibidores de la Transcriptasa Inversa/farmacología , Selección Genética
20.
Org Biomol Chem ; 11(33): 5473-80, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23857455

RESUMEN

Thymidylyltransferases (thymidine diphospho pyrophosphorylases) are nucleotidylyltransferases that play key roles in the biosynthesis of carbohydrate components within bacterial cell walls and in the biosynthesis of glycosylated natural products. They catalyze the formation of sugar nucleotides concomitant with the release of pyrophosphate. Protein engineering of thymidylyltransferases has been an approach for the production of a variety of non-physiological sugar nucleotides. In this work, we have explored chemical approaches towards modifying the activity of the thymidylyltransferase (Cps2L) cloned from S. pneumoniae, through the use of chemically synthesized 'activated' nucleoside triphosphates with enhanced leaving groups, or by switching the metal ion co-factor specificity. Within a series of phosphonate-containing nucleoside triphosphate analogues, thymidylyltransferase activity is enhanced based on the acidity of the leaving group and a Brønsted-type analysis indicated that leaving group departure is rate limiting. We have also determined IC50 values for a series of bisphosphonates as inhibitors of thymidylyltransferases. No correlation between the acidity of the inhibitors (pKa) and the magnitude of enzyme inhibition was found.


Asunto(s)
Difosfonatos/química , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Timidina/química , Sitios de Unión , Activación Enzimática/efectos de los fármacos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Nucleósido-Trifosfatasa/genética , Ingeniería de Proteínas , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética , Especificidad por Sustrato , Timidina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA