Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Cell ; 154(1): 169-84, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23827681

RESUMEN

Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1' and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Neoplasias Ováricas/enzimología , Ubiquitinación , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Endopeptidasas/genética , Femenino , Humanos , Modelos Moleculares , Neoplasias Ováricas/metabolismo , Estructura Terciaria de Proteína , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Ubiquitinas/metabolismo
2.
J Biol Chem ; 300(8): 107489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908753

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation, and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual ß-lactam-forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for ß-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the ß-lactone-forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Dominio Catalítico , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Cristalografía por Rayos X , Modelos Moleculares
3.
Nature ; 565(7737): 112-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542153

RESUMEN

Many enzymes catalyse reactions that proceed through covalent acyl-enzyme (ester or thioester) intermediates1. These enzymes include serine hydrolases2,3 (encoded by one per cent of human genes, and including serine proteases and thioesterases), cysteine proteases (including caspases), and many components of the ubiquitination machinery4,5. Their important acyl-enzyme intermediates are unstable, commonly having half-lives of minutes to hours6. In some cases, acyl-enzyme complexes can be stabilized using substrate analogues or active-site mutations but, although these approaches can provide valuable insight7-10, they often result in complexes that are substantially non-native. Here we develop a strategy for incorporating 2,3-diaminopropionic acid (DAP) into recombinant proteins, via expansion of the genetic code11. We show that replacing catalytic cysteine or serine residues of enzymes with DAP permits their first-step reaction with native substrates, allowing the efficient capture of acyl-enzyme complexes that are linked through a stable amide bond. For one of these enzymes, the thioesterase domain of valinomycin synthetase12, we elucidate the biosynthetic pathway by which it progressively oligomerizes tetradepsipeptidyl substrates to a dodecadepsipeptidyl intermediate, which it then cyclizes to produce valinomycin. By trapping the first and last acyl-thioesterase intermediates in the catalytic cycle as DAP conjugates, we provide structural insight into how conformational changes in thioesterase domains of such nonribosomal peptide synthetases control the oligomerization and cyclization of linear substrates. The encoding of DAP will facilitate the characterization of diverse acyl-enzyme complexes, and may be extended to capturing the native substrates of transiently acylated proteins of unknown function.


Asunto(s)
Biocatálisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Valinomicina/biosíntesis , beta-Alanina/análogos & derivados , Vías Biosintéticas , Cisteína/metabolismo , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Dominios Proteicos , Serina/metabolismo , Especificidad por Sustrato , beta-Alanina/metabolismo
4.
Proteins ; 92(6): 693-704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38179877

RESUMEN

Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding ß-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/ß hydrolase structure and a potential allosteric binding site within human APTs.


Asunto(s)
Dominio Catalítico , Unión Proteica , Pliegue de Proteína , Tioléster Hidrolasas , Humanos , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Ligandos , Modelos Moleculares , Secuencia de Aminoácidos , Cinética , Secuencia Conservada , Estabilidad de Enzimas , Francisella tularensis/enzimología , Francisella tularensis/metabolismo , Francisella tularensis/química , Cristalografía por Rayos X , Especificidad por Sustrato
5.
Biochem Biophys Res Commun ; 726: 150244, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38905785

RESUMEN

Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.


Asunto(s)
Isotiocianatos , Lipoilación , Sulfóxidos , Tioléster Hidrolasas , Isotiocianatos/metabolismo , Isotiocianatos/farmacología , Isotiocianatos/química , Sulfóxidos/farmacología , Sulfóxidos/metabolismo , Sulfóxidos/química , Humanos , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/química , Lipoilación/efectos de los fármacos , Unión Proteica , Células HEK293 , Membrana Celular/metabolismo
6.
Biochem Soc Trans ; 52(4): 1565-1577, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39140379

RESUMEN

Lipid synthesis and transport are essential for energy, production of cell membrane, and cell signaling. Acyl-CoA thioesterases (ACOTs) function to regulate intracellular levels of fatty acyl-CoAs through hydrolysis. Two members of this family, ACOT11 and ACOT12, contain steroidogenic acute regulatory related lipid transfer domains, which typically function as lipid transport or regulatory domains. This work reviews ACOT11 and ACOT12 structures and functions, and the potential role of the START domains in lipid transfer activity and the allosteric regulation of catalytic activity.


Asunto(s)
Tioléster Hidrolasas , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/química , Humanos , Metabolismo de los Lípidos , Animales , Modelos Moleculares , Regulación Alostérica
7.
Org Biomol Chem ; 22(33): 6713-6717, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39119636

RESUMEN

Penicillin-binding protein-type thioesterases (PBP-type TEs) catalyze head-to-tail macrolactamization in bacterial nonribosomal peptide biosynthesis. Here the scope of FlkO, a new PBP-type TE in cyclofaulknamycin biosynthesis, was thoroughly evaluated. The preference for small residues at the substrate C-terminus was consistent with the decreased volume of its putative substrate-binding pocket.


Asunto(s)
Proteínas de Unión a las Penicilinas , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/química , Streptomyces/enzimología , Streptomyces/metabolismo , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/química , Especificidad por Sustrato
8.
Angew Chem Int Ed Engl ; 63(18): e202402010, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38462490

RESUMEN

The cinnamoyl lipid compound youssoufene A1 (1), featuring a unique dearomatic carbon-bridged dimeric skeleton, exhibits increased inhibition against multidrug resistant Enterococcus faecalis as compared to monomeric youssoufenes. However, the formation process of this intriguing dearomatization/dimerization remains unknown. In this study, an unusual "gene-within-gene" thioesterase (TE) gene ysfF was functionally characterized. The gene was found to naturally encodes two proteins, an entire YsfF with α/ß-hydrolase and 4-hydroxybenzoyl-CoA thioesterase (4-HBT)-like enzyme domains, and a nested YsfFHBT (4-HBT-like enzyme). Using an intracellular tagged carrier-protein tracking (ITCT) strategy, in vitro reconstitution and in vivo experiments, we found that: i) both domains of YsfF displayed thioesterase activities; ii) YsfF/YsfFHBT could accomplish the 6π-electrocyclic ring closure for benzene ring formation; and iii) YsfF and cyclase YsfX together were responsible for the ACP-tethered dearomatization/dimerization process, possibly through an unprecedented Michael-type addition reaction. Moreover, site-directed mutagenesis experiments demonstrated that N301, E483 and H566 of YsfF are critical residues for both the 6π-electrocyclization and dimerization processes. This study enhances our understanding of the multifunctionality of the TE protein family.


Asunto(s)
Lípidos , Tioléster Hidrolasas , Dimerización , Tioléster Hidrolasas/química , Mutagénesis Sitio-Dirigida
9.
Mol Cell ; 58(6): 935-46, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091342

RESUMEN

The poly(ADP-ribose) polymerases (PARPs) are a major family of enzymes capable of modifying proteins by ADP-ribosylation. Due to the large size and diversity of this family, PARPs affect almost every aspect of cellular life and have fundamental roles in DNA repair, transcription, heat shock and cytoplasmic stress responses, cell division, protein degradation, and much more. In the past decade, our understanding of the PARP enzymatic mechanism and activation, as well as regulation of ADP-ribosylation signals by the readers and erasers of protein ADP-ribosylation, has been significantly advanced by the emergence of new structural data, reviewed herein, which allow for better understanding of the biological roles of this widespread post-translational modification.


Asunto(s)
Dominio Catalítico , Glicósido Hidrolasas/química , Poli Adenosina Difosfato Ribosa/química , Poli(ADP-Ribosa) Polimerasas/química , Estructura Terciaria de Proteína , Tioléster Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Tioléster Hidrolasas/metabolismo
10.
Nucleic Acids Res ; 49(18): 10477-10492, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34508355

RESUMEN

ADP-ribosylation is a modification that targets a variety of macromolecules and regulates a diverse array of important cellular processes. ADP-ribosylation is catalysed by ADP-ribosyltransferases and reversed by ADP-ribosylhydrolases. Recently, an ADP-ribosyltransferase toxin termed 'DarT' from bacteria, which is distantly related to human PARPs, was shown to modify thymidine in single-stranded DNA in a sequence specific manner. The antitoxin of DarT is the macrodomain containing ADP-ribosylhydrolase DarG, which shares striking structural homology with the human ADP-ribosylhydrolase TARG1. Here, we show that TARG1, like DarG, can reverse thymidine-linked DNA ADP-ribosylation. We find that TARG1-deficient human cells are extremely sensitive to DNA ADP-ribosylation. Furthermore, we also demonstrate the first detection of reversible ADP-ribosylation on genomic DNA in vivo from human cells. Collectively, our results elucidate the impact of DNA ADP-ribosylation in human cells and provides a molecular toolkit for future studies into this largely unknown facet of ADP-ribosylation.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , ADN/metabolismo , Tioléster Hidrolasas/fisiología , Adenosina Difosfato Ribosa/química , Toxinas Bacterianas/metabolismo , Línea Celular , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/metabolismo , Humanos , Tioléster Hidrolasas/química , Timidina/metabolismo
11.
J Bacteriol ; 204(8): e0001422, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35876515

RESUMEN

Thioesterases play a critical role in metabolism, membrane biosynthesis, and overall homeostasis for all domains of life. In this present study, we characterize a putative thioesterase from Escherichia coli MG1655 and define its role as a cytosolic enzyme. Building on structure-guided functional predictions, we show that YigI is a medium- to long-chain acyl-CoA thioesterase that is involved in the degradation of conjugated linoleic acid (CLA) in vivo, showing overlapping specificity with two previously defined E. coli thioesterases TesB and FadM. We then bioinformatically identify the regulatory relationships that induce YigI expression, which include: an acidic environment, high oxygen availability, and exposure to aminoglycosides. Our findings define a role for YigI and shed light on why the E. coli genome harbors numerous thioesterases with closely related functions. IMPORTANCE Previous research has shown that long chain acyl-CoA thioesterases are needed for E. coli to grow in the presence of carbon sources such as conjugated linoleic acid, but that E. coli must possess at least one such enzyme that had not previously been characterized. Building off structure-guided function predictions, we showed that the poorly annotated protein YigI is indeed the previously unidentified third acyl CoA thioesterase. We found that the three potentially overlapping acyl-CoA thioesterases appear to be induced by nonoverlapping conditions and use that information as a starting point for identifying the precise reactions catalyzed by each such thioesterase, which is an important prerequisite for their industrial application and for more accurate metabolic modeling of E. coli.


Asunto(s)
Escherichia coli , Ácidos Grasos , Tioléster Hidrolasas/metabolismo , Acilcoenzima A/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética
12.
J Biol Chem ; 296: 100106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33219126

RESUMEN

Members of the metallo-ß-lactamase (MBL) superfamily of enzymes harbor a highly conserved αßßα MBL-fold domain and were first described as inactivators of common ß-lactam antibiotics. In humans, these enzymes have been shown to exhibit diverse functions, including hydrolase activity toward amides, esters, and thioesters. An uncharacterized member of the human MBL family, MBLAC2, was detected in multiple palmitoylproteomes, identified as a zDHHC20 S-acyltransferase interactor, and annotated as a potential thioesterase. In this study, we confirmed that MBLAC2 is palmitoylated and identified the likely S-palmitoylation site as Cys254. S-palmitoylation of MBLAC2 is increased in cells when expressed with zDHHC20, and MBLAC2 is a substrate for purified zDHHC20 in vitro. To determine its biochemical function, we tested the ability of MBLAC2 to hydrolyze a variety of small molecules and acylprotein substrates. MBLAC2 has acyl-CoA thioesterase activity with kinetic parameters and acyl-CoA selectivity comparable with acyl-CoA thioesterase 1 (ACOT1). Two predicted zinc-binding residues, Asp87 and His88, are required for MBLAC2 hydrolase activity. Consistent with a role in fatty acid metabolism in cells, MBLAC2 was cross-linked to a photoactivatable fatty acid in a manner that was independent of its S-fatty acylation at Cys254. Our study adds to previous investigations demonstrating the versatility of the MBL-fold domain in supporting a variety of enzymatic reactions.


Asunto(s)
Tioléster Hidrolasas/metabolismo , beta-Lactamasas/metabolismo , Ácido Aspártico/metabolismo , Línea Celular Tumoral , Histidina/metabolismo , Humanos , Lipoilación/fisiología , Tioléster Hidrolasas/química , beta-Lactamasas/química
13.
J Am Chem Soc ; 144(22): 9554-9558, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639490

RESUMEN

Oxidative coupling and oxidative rearrangement are two of the most common biosynthetic strategies to form diaryl ethers. In contrast, enzymatic diaryl ether generation that proceeds in a nonoxidative manner has not been characterized thus far. Here, we discovered a versatile thioesterase (TE) domain from the nonreducing polyketide synthase (nrPKS) AN7909, which catalyzes diaryl ether formation through a series of successive steps involving esterification, a Smiles rearrangement, and hydrolysis. Further mutations and biochemical analyses with synthetic mimic substrates provide insight into the proposed catalytic process of the TE domain.


Asunto(s)
Éter , Sintasas Poliquetidas , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Tioléster Hidrolasas/química
14.
Mol Cell ; 53(4): 617-30, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24560272

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions that lead to genetic mutations and cell death. Protein ubiquitination mediated by the E3 ubiquitin ligase RNF8 within the regions surrounding DSBs recruits DNA DSB response (DDR) factors and induces chromatin remodeling, which supports cell survival after DNA damage. Nevertheless, the impact of RNF8-mediated ubiquitination on DNA repair remains to be elucidated. Here, we report that depletion of the deubiquitinating enzyme OTUB2 enhances RNF8-mediated ubiquitination in an early phase of the DDR and promotes faster DSB repair but suppresses homologous recombination. The rapid ubiquitination results in accelerated accumulation of 53BP1 and RAP80 at DSBs, which in turn protects DSB ends from resection in OTUB2-depleted cells. Mechanistically, OTUB2 suppresses RNF8-mediated L3MBTL1 ubiquitination and Lys 63-linked ubiquitin chain formation in a deubiquitinating activity-dependent manner. Thus, OTUB2 fine-tunes the speed of DSB-induced ubiquitination so that the appropriate DNA repair pathway is chosen.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Tioléster Hidrolasas/química , Proteínas Portadoras/metabolismo , Muerte Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Biblioteca de Genes , Silenciador del Gen , Células HeLa , Chaperonas de Histonas , Histonas/química , Recombinación Homóloga , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/química , Mutación , Proteínas Nucleares/metabolismo , Plásmidos/metabolismo , ARN Interferente Pequeño/metabolismo , Recombinación Genética , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/química , Ubiquitina-Proteína Ligasas
15.
J Biol Chem ; 295(20): 6972-6982, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32265297

RESUMEN

The ovarian tumor domain (OTU) deubiquitinylating cysteine proteases OTUB1 and OTUB2 (OTU ubiquitin aldehyde binding 1 and 2) are representative members of the OTU subfamily of deubiquitinylases. Deubiquitinylation critically regulates a multitude of important cellular processes, such as apoptosis, cell signaling, and growth. Moreover, elevated OTUB expression has been observed in various cancers, including glioma, endometrial cancer, ovarian cancer, and breast cancer. Here, using molecular dynamics simulation approaches, we found that both OTUB1 and OTUB2 display a catalytic triad characteristic of proteases but differ in their configuration and protonation states. The OTUB1 protein had a prearranged catalytic site, with strong electrostatic interactions between the active-site residues His265 and Asp267 In OTUB2, however, the arrangement of the catalytic triad was different. In the absence of ubiquitin, the neutral states of the catalytic-site residues in OTUB2 were more stable, resulting in larger distances between these residues. Only upon ubiquitin binding did the catalytic triad in OTUB2 rearrange and bring the active site into a catalytically feasible state. An analysis of water access channels revealed only a few diffusion trajectories for the catalytically active form of OTUB1, whereas in OTUB2 the catalytic site was solvent-accessible, and a larger number of water molecules reached and left the binding pocket. Interestingly, in OTUB2, the catalytic residues His224 and Asn226 formed a stable hydrogen bond. We propose that the observed differences in activation kinetics, protonation states, water channels, and active-site accessibility between OTUB1 and OTUB2 may be relevant for the selective design of OTU inhibitors.


Asunto(s)
Cisteína Endopeptidasas/química , Simulación de Dinámica Molecular , Tioléster Hidrolasas/química , Dominio Catalítico , Enzimas Desubicuitinizantes , Activación Enzimática , Humanos , Enlace de Hidrógeno
16.
J Biol Chem ; 295(49): 16487-16496, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32913120

RESUMEN

S-Acylation, the reversible post-translational lipid modification of proteins, is an important mechanism to control the properties and function of ion channels and other polytopic transmembrane proteins. However, although increasing evidence reveals the role of diverse acyl protein transferases (zDHHC) in controlling ion channel S-acylation, the acyl protein thioesterases that control ion channel deacylation are very poorly defined. Here we show that ABHD17a (α/ß-hydrolase domain-containing protein 17a) deacylates the stress-regulated exon domain of large conductance voltage- and calcium-activated potassium (BK) channels inhibiting channel activity independently of effects on channel surface expression. Importantly, ABHD17a deacylates BK channels in a site-specific manner because it has no effect on the S-acylated S0-S1 domain conserved in all BK channels that controls membrane trafficking and is deacylated by the acyl protein thioesterase Lypla1. Thus, distinct S-acylated domains in the same polytopic transmembrane protein can be regulated by different acyl protein thioesterases revealing mechanisms for generating both specificity and diversity for these important enzymes to control the properties and functions of ion channels.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Empalme del ARN , Acilación , Células HEK293 , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Potenciales de la Membrana , Dominios Proteicos , Transporte de Proteínas , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo
17.
Proteins ; 89(5): 558-568, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33389775

RESUMEN

Polyene polyketides amphotericin B (AMB) and nystatin (NYS) are important antifungal drugs. Thioesterases (TEs), located at the last module of PKS, control the release of polyketides by cyclization or hydrolysis. Intrigued by the tiny structural difference between AMB and NYS, as well as the high sequence identity between AMB TE and NYS TE, we constructed four systems to study the structural characteristics, catalytic mechanism, and product release of AMB TE and NYS TE with combined MD simulations and quantum mechanics/molecular mechanics calculations. The results indicated that compared with AMB TE, NYS TE shows higher specificity on its natural substrate and R26 as well as D186 were proposed to a key role in substrate recognition. The energy barrier of macrocyclization in AMB-TE-Amb and AMB-TE-Nys systems were calculated to be 14.0 and 22.7 kcal/mol, while in NYS-TE-Nys and NYS-TE-Amb systems, their energy barriers were 17.5 and 25.7 kcal/mol, suggesting the cyclization with their natural substrates were more favorable than that with exchanged substrates. At last, the binding free energy obtained with the MM-PBSA.py program suggested that it was easier for natural products to leave TE enzymes after cyclization. And key residues to the departure of polyketide product from the active site were highlighted. We provided a catalytic overview of AMB TE and NYS TE including substrate recognition, catalytic mechanism and product release. These will improve the comprehension of polyene polyketide TEs and benefit for broadening the substrate flexibility of polyketide TEs.


Asunto(s)
Anfotericina B/química , Proteínas Bacterianas/química , Nistatina/química , Streptomyces/enzimología , Tioléster Hidrolasas/química , Anfotericina B/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , Ciclización , Enlace de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Nistatina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Teoría Cuántica , Streptomyces/química , Especificidad por Sustrato , Termodinámica , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
18.
J Am Chem Soc ; 143(1): 80-84, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33351624

RESUMEN

Medium-ring lactones are synthetically challenging due to unfavorable energetics involved in cyclization. We have discovered a thioesterase enzyme DcsB, from the decarestrictine C1 (1) biosynthetic pathway, that efficiently performs medium-ring lactonizations. DcsB shows broad substrate promiscuity toward linear substrates that vary in lengths and substituents, and is a potential biocatalyst for lactonization. X-ray crystal structure and computational analyses provide insights into the molecular basis of catalysis.


Asunto(s)
Lactonas/síntesis química , Tioléster Hidrolasas/química , Beauveria/enzimología , Beauveria/genética , Biocatálisis , Cristalografía por Rayos X , Ciclización , Esterificación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lactonas/metabolismo , Simulación del Acoplamiento Molecular , Familia de Multigenes , Unión Proteica , Especificidad por Sustrato , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
19.
Biotechnol Bioeng ; 118(12): 4623-4634, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427915

RESUMEN

The standalone metallo-ß-lactamase-type thioesterase (MßL-TE), belongs to the group V nonreducing polyketide synthase agene cluster, catalyzes the rate-limiting step of product releasing. Our work first investigated on the orthologous MßL-TEs from different origins to determine which nonconserved amino acid residues are important to the hydrolysis efficiency. A series of chimeric MßL-TEs were constructed by fragment swapping and site-directed mutagenesis, in vivo enzymatic assay showed that two nonconserved residues A19 and E75 (numbering in HyTE) were critical to the catalytic performance. Protein structure modeling suggested that these two residues are located in different areas of HyTE. A19 is on the entrance to the active sites, whereas E75 resides in the linker between the two ß strands which hold the metal-binding sites. Combining with computational simulations and comparative enzymatic assay, different screening criteria were set up for selecting the variants on the two noncatalytic and nonconserved key residues to improve the catalytic activity. The rational design on A19 and E75 gave five candidates in total, two (A19F and E75Q) of which were thus found significantly improved the enzymatic performance of HyTE. The double-point mutant was constructed to further improve the activity, which was increased by 28.4-fold on product accumulation comparing to the wild-type HyTE. This study provides a novel approach for engineering on nonconserved residues to optimize enzymatic performance.


Asunto(s)
Sitios de Unión/genética , Mutagénesis Sitio-Dirigida/métodos , Tioléster Hidrolasas , beta-Lactamasas , Antracenos/metabolismo , Estabilidad de Enzimas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Eurotiales/enzimología , Eurotiales/genética , Proteínas Fúngicas/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
20.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502284

RESUMEN

Metallo-ß-lactamases (MBLs) are class B ß-lactamases from the metallo-hydrolase-like MBL-fold superfamily which act on a broad range of ß-lactam antibiotics. A previous study on BLEG-1 (formerly called Bleg1_2437), a hypothetical protein from Bacillus lehensis G1, revealed sequence similarity and activity to B3 subclass MBLs, despite its evolutionary divergence from these enzymes. Its relatedness to glyoxalase II (GLXII) raises the possibility of its enzymatic promiscuity and unique structural features compared to other MBLs and GLXIIs. This present study highlights that BLEG-1 possessed both MBL and GLXII activities with similar catalytic efficiencies. Its crystal structure revealed highly similar active site configuration to YcbL and GloB GLXIIs from Salmonella enterica, and L1 B3 MBL from Stenotrophomonas maltophilia. However, different from GLXIIs, BLEG-1 has an insertion of an active-site loop, forming a binding cavity similar to B3 MBL at the N-terminal region. We propose that BLEG-1 could possibly have evolved from GLXII and adopted MBL activity through this insertion.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Tioléster Hidrolasas/química , beta-Lactamasas/química , Ampicilina/química , Ampicilina/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Glutatión/análogos & derivados , Glutatión/química , Glutatión/metabolismo , Simulación del Acoplamiento Molecular , Filogenia , Conformación Proteica , Stenotrophomonas maltophilia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA