Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Immunol ; 209(7): 1348-1358, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165203

RESUMEN

Endotoxin tolerance is a state of hyporesponsiveness to LPS, triggered by previous exposure to endotoxin. Such an immunosuppressive state enhances the risks of secondary infection and has been associated with the pathophysiology of sepsis. Although this phenomenon has been extensively studied, its molecular mechanism is not fully explained. Among candidates that play a crucial role in this process are negative regulators of TLR signaling, but the contribution of MCP-induced protein 1 (MCPIP1; Regnase-1) has not been studied yet. To examine whether macrophage expression of MCPIP1 participates in endotoxin tolerance, we used both murine and human primary macrophages devoid of MCPIP1 expression. In our study, we demonstrated that MCPIP1 contributes to LPS hyporesponsiveness induced by subsequent LPS stimulation and macrophage reprogramming. We proved that this mechanism revolves around the deubiquitinase activity of MCPIP1, which inhibits the phosphorylation of MAPK and NF-κB activation. Moreover, we showed that MCPIP1 controlled the level of proinflammatory transcripts in LPS-tolerized cells independently of its RNase activity. Finally, we confirmed these findings applying an in vivo endotoxin tolerance model in wild-type and myeloid MCPIP1-deficient mice. Taken together, this study describes for the first time, to our knowledge, that myeloid MCPIP1 participates in endotoxin tolerance and broadens the scope of known negative regulators of the TLR4 pathway crucial in this phenomenon.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Enzimas Desubicuitinizantes , Endorribonucleasas , Tolerancia a Endotoxinas , Endotoxinas , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Ribonucleasas/genética , Receptor Toll-Like 4/metabolismo , Factores de Transcripción
2.
BMC Genomics ; 24(1): 595, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805492

RESUMEN

BACKGROUND: Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS: We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS: We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION: This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.


Asunto(s)
Epigénesis Genética , Monocitos , Humanos , Monocitos/metabolismo , Tolerancia a Endotoxinas , Epigenómica , Cromatina/genética , Inmunidad Innata/genética , Transcriptoma , Endotoxinas/toxicidad , Proteínas de la Membrana/genética
3.
Inflamm Res ; 72(3): 531-540, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36633616

RESUMEN

BACKGROUND: Endotoxin tolerance (ET) is a protective mechanism in the process of sepsis, septic shock, and their sequelae including uncontrolled inflammation. Accumulating evidence has shown that peripheral T cells contribute to the induction of ET. However, what and how T-cell development contributes to ET inductions remain unclear. METHODS: Mice were intraperitoneally injected with LPS at a concentration of 5 mg/kg to establish an LPS tolerance model and were divided into two groups: a group examined 72 h after LPS injection (72-h group) and a group examined 8 days after LPS injection (8-day group). Injection of PBS was used as a control. We performed high-throughput sequencing to analyze the characteristics and changes of CD4+SP TCRß CDR3 repertoires with respect to V direct to J rearrangement during the ET induction. Moreover, the proportion and proliferation, as well as surface molecules such as CD80 and CD86, of F4/80+ macrophages were analyzed using FCM. Furthermore, ACT assay was designed and administered by the tail vein into murine LPS-induced mouse model to evaluate the role of F4/80+ macrophages on the development of CD4+SP thymocytes in ET condition. RESULTS: We found that the frequency and characteristics of the TCRß chain CDR3 changed obviously under condition of ET, indicating the occurrence of TCR rearrangement and thymocyte diversification. Moreover, the absolute numbers of F4/80+ macrophages, but not other APCs, were increased in thymic medulla at 72-h group, accompanied by the elevated function-related molecules of F4/80+ macrophages. Furthermore, adoptively transferred OVA332-339 peptide-loaded macrophages into Rag-1-/- mice induced the clone deletion of OVA-specific CD4+SP, thereby ameliorating the pathology in lung tissue in LPS challenge. CONCLUSIONS: These data reveal that the frequency and characteristics of the TCRß chain CDR3 undergo dynamic programming under conditions of LPS tolerance. Furthermore, the peripheral macrophages may be a key factor which carry peripheral antigen to thymic medulla and affect the negative selection of T-cell population, thereby contributing to the formation of ET. These results suggest that the clone selection in thymus in ET may confer protection against microbial sepsis.


Asunto(s)
Tolerancia a Endotoxinas , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , Linfocitos T , Timo , Receptores de Antígenos de Linfocitos T , Células Clonales
4.
J Immunol ; 207(1): 162-174, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183364

RESUMEN

According to a large number of reported cohorts, sepsis has been observed in nearly all deceased patients with COVID-19. We and others have described sepsis, among other pathologies, to be an endotoxin tolerance (ET)-related disease. In this study, we demonstrate that the culture of human blood cells from healthy volunteers in the presence of SARS-CoV-2 proteins induced ET hallmarks, including impairment of proinflammatory cytokine production, low MHC class II (HLA-DR) expression, poor T cell proliferation, and enhancing of both phagocytosis and tissue remodeling. Moreover, we report the presence of SARS-CoV-2 blood circulating proteins in patients with COVID-19 and how these levels correlate with an ET status, the viral RNA presence of SARS-CoV-2 in plasma, as well as with an increase in the proportion of patients with secondary infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Tolerancia a Endotoxinas , Genes MHC Clase II , Humanos , ARN Viral
5.
Mediators Inflamm ; 2023: 8387330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101596

RESUMEN

Theta- (θ-) defensins are pleiotropic host defense peptides with antimicrobial- and immune-modulating activities. Immune stimulation of cells with lipopolysaccharide (LPS, endotoxin) activates proinflammatory gene expression and cytokine secretion, both of which are attenuated by rhesus theta-defensin-1 (RTD-1) inhibition of NF-κB and MAP kinase pathways. Endotoxin tolerance is a condition that ensues when cells have an extended primary exposure to low levels of LPS, resulting in resistance to a subsequent LPS challenge. Recognition of LPS by Toll-like receptor-4 (TLR4) activates NF-κB, elevating levels of microRNA-146a (miR-146a), which targets IRAK1 and TRAF6 transcripts to reduce their protein levels and inhibits TLR signaling on secondary LPS stimulation. Here, we report that RTD-1 suppressed the expression of miR-146a and stabilized the IRAK1 protein in immune-stimulated, monocytic THP-1 cells. Cells that had primary exposure to LPS became endotoxin-tolerant, as evident from their failure to secrete TNF-α upon secondary endotoxin challenge. However, cells incubated with RTD-1 during the primary LPS stimulation secreted TNF-α after secondary LPS stimulation in an RTD-1 dose-dependent manner. Consistent with this, compared to the control treatment, cells treated with RTD-1 during primary LPS stimulation had increased NF-κB activity after secondary LPS stimulation. These results show that RTD-1 suppresses endotoxin tolerance by inhibiting the NF-κB pathway and demonstrates a novel inflammatory role for RTD-1 that is mediated by the downregulation of miR-146a during the innate immune response.


Asunto(s)
MicroARNs , FN-kappa B , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa , Tolerancia a Endotoxinas , Defensinas , Endotoxinas , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
6.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569622

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 µg/kg, and (3) sham-operated rats treated with i.p. LPS 100 µg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.


Asunto(s)
Isquemia Encefálica , Delirio , Indolamina-Pirrol 2,3,-Dioxigenasa , Animales , Masculino , Ratas , Delirio/etiología , Tolerancia a Endotoxinas , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Lipopolisacáridos/toxicidad , Ratas Sprague-Dawley
7.
Crit Care Med ; 50(6): e504-e515, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35067534

RESUMEN

OBJECTIVES: Recent publications have shown that mitochondrial dynamics can govern the quality and quantity of extracellular mitochondria subsequently impacting immune phenotypes. This study aims to determine if pathologic mitochondrial fission mediated by Drp1/Fis1 interaction impacts extracellular mitochondrial content and macrophage function in sepsis-induced immunoparalysis. DESIGN: Laboratory investigation. SETTING: University laboratory. SUBJECTS: C57BL/6 and BALB/C mice. INTERVENTIONS: Using in vitro and murine models of endotoxin tolerance (ET), we evaluated changes in Drp1/Fis1-dependent pathologic fission and simultaneously measured the quantity and quality of extracellular mitochondria. Next, by priming mouse macrophages with isolated healthy mitochondria (MC) and damaged mitochondria, we determined if damaged extracellular mitochondria are capable of inducing tolerance to subsequent endotoxin challenge. Finally, we determined if inhibition of Drp1/Fis1-mediated pathologic fission abrogates release of damaged extracellular mitochondria and improves macrophage response to subsequent endotoxin challenge. MEASUREMENTS AND MAIN RESULTS: When compared with naïve macrophages (NMs), endotoxin-tolerant macrophages (ETM) demonstrated Drp1/Fis1-dependent mitochondrial dysfunction and higher levels of damaged extracellular mitochondria (Mitotracker-Green + events/50 µL: ETM = 2.42 × 106 ± 4,391 vs NM = 5.69 × 105 ± 2,478; p < 0.001). Exposure of NMs to damaged extracellular mitochondria (MH) induced cross-tolerance to subsequent endotoxin challenge, whereas MC had minimal effect (tumor necrosis factor [TNF]-α [pg/mL]: NM = 668 ± 3, NM + MH = 221 ± 15, and NM + Mc = 881 ± 15; p < 0.0001). Inhibiting Drp1/Fis1-dependent mitochondrial fission using heptapeptide (P110), a selective inhibitor of Drp1/Fis1 interaction, improved extracellular mitochondrial function (extracellular mitochondrial membrane potential, JC-1 [R/G] ETM = 7 ± 0.5 vs ETM + P110 = 19 ± 2.0; p < 0.001) and subsequently improved immune response in ETMs (TNF-α [pg/mL]; ETM = 149 ± 1 vs ETM + P110 = 1,150 ± 4; p < 0.0001). Similarly, P110-treated endotoxin tolerant mice had lower amounts of damaged extracellular mitochondria in plasma (represented by higher extracellular mitochondrial membrane potential, TMRM/MT-G: endotoxin tolerant [ET] = 0.04 ± 0.02 vs ET + P110 = 0.21 ± 0.02; p = 0.03) and improved immune response to subsequent endotoxin treatment as well as cecal ligation and puncture. CONCLUSIONS: Inhibition of Drp1/Fis1-dependent mitochondrial fragmentation improved macrophage function and immune response in both in vitro and in vivo models of ET. This benefit is mediated, at least in part, by decreasing the release of damaged extracellular mitochondria, which contributes to endotoxin cross-tolerance. Altogether, these data suggest that alterations in mitochondrial dynamics may play an important role in sepsis-induced immunoparalysis.


Asunto(s)
Dinaminas/metabolismo , Sepsis , Animales , Dinaminas/genética , Dinaminas/farmacología , Tolerancia a Endotoxinas , Endotoxinas , Humanos , Macrófagos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales , Sepsis/patología
8.
Microb Pathog ; 164: 105448, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35189277

RESUMEN

Endotoxin tolerance refers to a state refractory to subsequent lipopolysaccharide (LPS) stimulations following a primary LPS exposure. To study the relationship between endotoxin tolerance and macrophage polarization, endotoxin tolerance was induced by 1 µg/mL LPS from the periodontal pathogen, Porphyromonas gingivalis (P. gingivalis), in peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs). Repeated P. gingivalis LPS challenges increased the quantities of CD206+ PMs, while the number of CD86+CD206+ PMs was reduced compared with the non-tolerant group (p < 0.05). However, there were no changes in BMDMs (p > 0.05). Down regulations of TNF-α, IL-12, nitric oxide and MMP-2 production, and upregulated IL-10, MMP-9 levels and arginase-1 activities occurred in tolerant PMs and BMDMs (p < 0.05). P. gingivalis LPS-tolerant PMs and BMDMs also enhanced scrape-wound healing abilities of 15p-1 cells (p < 0.05). Expressions of phospho-signal transducer and activator of transcription 6 (p-STAT6) and protein tyrosine phosphatase 1B (PTP1B) were increased, while p-MEK1/2 levels were downregulated in tolerant PMs and BMDMs (p < 0.05). IL-10 production in tolerant Stat6 knockdown RAW264.7 cells was lower than tolerant control cells (p < 0.05). P. gingivalis LPS-tolerant macrophages represented an intermediate state between M1/M2 polarization, which functioned as M2-like cells, and led to limited inflammatory responses and enhanced wound healing activities. The PTP1B-MEK1/2-STAT6 signaling pathway might be involved in the polarization of tolerant macrophages.


Asunto(s)
Lipopolisacáridos , Porphyromonas gingivalis , Tolerancia a Endotoxinas , Lipopolisacáridos/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo
9.
J Clin Periodontol ; 49(3): 270-279, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34970759

RESUMEN

OBJECTIVE: This review aims to present the current understanding of endotoxin tolerance (ET) in chronic inflammatory diseases and explores the potential connection with periodontitis. SUMMARY: Subsequent exposure to lipopolysaccharides (LPS) triggers ET, a phenomenon regulated by different mechanisms and pathways, including toll-like receptors (TLRs), nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB), apoptosis of immune cells, epigenetics, and microRNAs (miRNAs). These mechanisms interconnect ET with chronic inflammatory diseases including periodontitis. While the direct correlation between ET and periodontal destruction has not been fully elucidated, emerging reports point towards the potential tolerization of human periodontal ligament cells (hPDLCs) and gingival tissues with a significant reduction of TLR levels. CONCLUSIONS: There is a potential link between ET and periodontal diseases. Future studies should explore the crucial role of ET in the pathogenesis of periodontal diseases, as evidence of a tolerized oral mucosa may represent an intrinsic mechanism capable of regulating the oral immune response. A clear understanding of this host immune regulatory mechanism might lead to effective and more predictable therapeutic strategies to treat chronic inflammatory diseases and periodontitis.


Asunto(s)
Enfermedades Periodontales , Periodontitis , Tolerancia a Endotoxinas , Humanos , Lipopolisacáridos/metabolismo , Enfermedades Periodontales/patología , Ligamento Periodontal/patología , Periodontitis/tratamiento farmacológico
10.
Immunopharmacol Immunotoxicol ; 44(3): 326-337, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35260024

RESUMEN

CONTEXT: Parkinson's disease is a common chronic neurodegenerative disease characterized by massive loss of dopaminergic neurons in the substantia nigra. Neuroinflammation has been shown to play an important role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. The role of immune tolerance in neuroinflammation and neurodegenerative diseases induced by peripheral factors is unclear. OBJECTIVE: This study established a model of endotoxin tolerance to explore the protective effect of endotoxin tolerance on Parkinson-like changes induced by repeated peripheral injections of high-dose LPS, and to explore its inflammatory mechanism. MATERIALS AND METHODS: In this study, mice were injected intraperitoneally with low dose (0.5 mg/kg) LPS for 4 days to induce endotoxin tolerance (ET). Then, high-dose (1 mg/kg) LPS was injected continuously intraperitoneally for 4 days to induce Parkinson-like changes. Cytokines were detected by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Activation of microglial cells was detected by protein expression of CD68 and ionized calcium binding adapter molecule 1(Iba-1) by Western blotting and immunofluorescence. Hematoxylin and eosin staining and expression of tyrosine hydroxylase (TH) and dopamine (DA) were used to assess dopaminergic neuronal injury. The open field test and muscle tension test were used to assess behavioral disorders. RESULTS: As expected, compared with non-ET animals, ET preconditioning significantly reduced the production of inflammatory cytokines in the substantia nigra, inhibited microglial activation, and alleviated the pathological changes of dopaminergic neurons. CONCLUSIONS: ET may be a promising intervention method for neurodegenerative diseases.HighlightsET was successfully induced by continuous low-dose intraperitoneal LPS injection in mice.ET pretreatment inhibited neuroinflammation in the SN induced by continuous peripheral high doses of LPS.ET pretreatment inhibited continuous peripheral high-dose LPS injection-induced microglial activation in the SN.ET pretreatment decreased LPS-induced functional impairment of dopaminergic neurons.ET reversed the morphological changes of dopaminergic neurons induced by peripheral high-dose LPS.ET pretreatment improved continuous peripheral high-dose LPS injection-induced behavioral impairment.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Citocinas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Tolerancia a Endotoxinas , Lipopolisacáridos/toxicidad , Ratones , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo
11.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743025

RESUMEN

Immune suppression is known to occur during sepsis. Endotoxin tolerance is considered a mechanism of immune suppression in sepsis. However, the timing and serial changes in endotoxin tolerance have not been fully investigated. In this study, we investigated serial changes in endotoxin tolerance in a polymicrobial sepsis model. Herein, we used a rat model of fecal slurry polymicrobial sepsis. After induction of sepsis, endotoxin tolerance of peripheral blood mononuclear cells (PBMCs) and splenocytes was measured at various time points (6 h, 12 h, 24 h, 48 h, 72 h, 5 days, and 7 days), through the measurement of TNF-α production after stimulation with lipopolysaccharide (LPS) in an ex vivo model. At each time point, we checked for plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 levels. Moreover, we analyzed reactive oxygen species (ROS) as measured by 2',7'-dichlorodihydrofluorescein, plasma lactate, serum alanine aminotransferase (ALT), and creatinine levels. Nuclear factor (NF)-κB, IL-1 receptor-associated kinase (IRAK)-M, and cleaved caspase 3 levels were measured in the spleen. Endotoxin tolerance, measured by TNF-α production stimulated through LPS in PBMCs and splenocytes, was induced early in the sepsis model, starting from 6 h after sepsis. It reached a nadir at 24 to 48 h after sepsis, and then started to recover. Endotoxin tolerance was more prominent in the severe sepsis model. Plasma cytokines peaked at time points ranging from 6 to 12 h after sepsis. ROS levels peaked at 12 h and then decreased. Lactate, ALT, and serum creatinine levels increased up to 24 to 48 h, and then decreased. Phosphorylated p65 and IRAK-M levels of spleen increased up to 12 to 24 h and then decreased. Apoptosis was prominent 48 h after sepsis, and then recovered. In the rat model of polymicrobial sepsis, endotoxin tolerance occurred earlier and started to recover from 24 to 48 h after sepsis.


Asunto(s)
Lipopolisacáridos , Sepsis , Animales , Tolerancia a Endotoxinas , Interleucina-6 , Lactatos , Leucocitos Mononucleares , Lipopolisacáridos/farmacología , FN-kappa B , Ratas , Especies Reactivas de Oxígeno , Sepsis/patología , Factor de Necrosis Tumoral alfa
12.
Am J Obstet Gynecol ; 225(6): 681.e1-681.e20, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34181894

RESUMEN

BACKGROUND: Pregnancy represents a unique challenge for the maternal-fetal immune interface, requiring a balance between immunosuppression, which is essential for the maintenance of a semiallogeneic fetus, and proinflammatory host defense to protect the maternal-fetal interface from invading organisms. Adaptation to repeated inflammatory stimuli (endotoxin tolerance) may be critical in preventing inflammation-induced preterm birth caused by exaggerated maternal inflammatory responses to mild or moderate infections that are common during pregnancy. However, the exact mechanisms contributing to the maintenance of tolerance to repeated infections are not completely understood. MicroRNAs play important roles in pregnancy with several microRNAs implicated in gestational tissue function and in pathologic pregnancy conditions. MicroRNA-519c, a member of the chromosome 19 microRNA cluster, is a human-specific microRNA mainly expressed in the placenta. However, its role in pregnancy is largely unknown. OBJECTIVE: This study aimed to explore the role of "endotoxin tolerance" failure in the pathogenesis of an exaggerated inflammatory response often seen in inflammation-mediated preterm birth. In this study, we investigated the role of microRNA-519c, a placenta-specific microRNA, as a key regulator of endotoxin tolerance at the maternal-fetal interface. STUDY DESIGN: Using a placental explant culture system, samples from term and second-trimester placentas were treated with lipopolysaccharide. After 24 hours, the conditioned media were collected for analysis, and the placental explants were re-exposed to repeated doses of lipopolysaccharide for 3 days. The supernatant was analyzed for inflammatory markers, the presence of extracellular vesicles, and microRNAs. To study the possible mechanism of action of the microRNAs, we evaluated the phosphodiesterase 3B pathway involved in tumor necrosis factor alpha production using a microRNA mimic and phosphodiesterase 3B small interfering RNA transfection. Finally, we analyzed human placental samples from different gestational ages and from women affected by inflammation-associated pregnancies. RESULTS: Our data showed that repeated exposure of the human placenta to endotoxin challenges induced a tolerant phenotype characterized by decreased tumor necrosis factor alpha and up-regulated interleukin-10 levels. This reaction was mediated by the placenta-specific microRNA-519c packaged within placental extracellular vesicles. Lipopolysaccharide treatment increased the extracellular vesicles that were positive for the exosome tetraspanin markers, namely CD9, CD63, and CD81, and secreted primarily by trophoblasts. Primary human trophoblast cells transfected with a microRNA-519c mimic decreased phosphodiesterase 3B, whereas a lack of phosphodiesterase 3B, achieved by small interfering RNA transfection, led to decreased tumor necrosis factor alpha production. These data support the hypothesis that the anti-inflammatory action of microRNA-519c was mediated by a down-regulation of the phosphodiesterase 3B pathway, leading to inhibition of tumor necrosis factor alpha production. Furthermore, human placentas from normal and inflammation-associated pregnancies demonstrated that a decreased placental microRNA-519c level was linked to infection-induced inflammatory pathologies during pregnancy. CONCLUSION: We identified microRNA-519c, a human placenta-specific microRNA, as a novel regulator of immune adaptation associated with infection-induced preterm birth at the maternal-fetal interface. Our study serves as a basis for future experiments to explore the potential use of microRNA-519c as a biomarker for infection-induced preterm birth.


Asunto(s)
Tolerancia a Endotoxinas , MicroARNs/metabolismo , Placenta/metabolismo , Nacimiento Prematuro , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Lipopolisacáridos , Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo
13.
Methods Mol Biol ; 2700: 93-116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603176

RESUMEN

Dendritic cells (DCs) are key regulators of immunogenic and tolerogenic immune responses. Both these immune responses require DCs respectively to activate effector T cells or to induce their anergy and T regulatory activity. Modifications of DCs in the laboratory and several pharmacological agents can enhance and stabilize their tolerogenic properties. Recent evidences demonstrate that activation of specific toll-like receptors (TLRs) can be involved in induction of DCs with tolerogenic properties able to initiate T regulatory cell responses.In the present chapter, we show a detail protocol to obtain in vitro regulatory conventional DCs (cDCs) in response to repeated exposure to lipopolysaccharide (LPS), a ligand of TLR4, by mimicking the mechanism of endotoxin tolerance. Subsequently, the protective effect of cDCs' conditionate with LPS will be describe in in vivo inflammatory model of endotoxemia. Finally, we illustrate the method to study the ability of LPS-conditionate cDCs to promote T regulatory cells in ex vivo system.


Asunto(s)
Tolerancia a Endotoxinas , Linfocitos T Reguladores , Lipopolisacáridos , Células Dendríticas
14.
J Dent Res ; 102(3): 331-339, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36529984

RESUMEN

Periodontal disease is caused by dysbiosis of the dental biofilm and the host inflammatory response. Various pathogenic factors, such as proteases and lipopolysaccharides (LPSs) produced by bacteria, are involved in disease progression. Endotoxin tolerance is a function of myeloid cells, which sustain inflammation and promote tissue regeneration upon prolonged stimulation by endotoxins such as LPS. The role of endotoxin tolerance is gaining attention in various chronic inflammatory diseases, but its role in periodontal disease remains elusive. Oxidative stress, one of the major risk factors for periodontal disease, promotes disease progression through various mechanisms, of which only some are known. The effect of oxidative stress on endotoxin tolerance has not yet been studied, and we postulated that endotoxin tolerance regulation may be an additional mechanism through which oxidative stress influences periodontal disease. This study aimed to reveal the effect of oxidative stress on endotoxin tolerance and that of endotoxin tolerance on periodontitis progression. The effect of oxidative stress on endotoxin tolerance was analyzed in vitro using peritoneal macrophages of mice and hydrogen peroxide (H2O2). The results showed that oxidative stress inhibits endotoxin tolerance induced by Porphyromonas gingivalis LPS in macrophages, at least partially, by downregulating LPS-elicited negative regulators of Toll-like receptor (TLR) signaling. A novel oxidative stress mouse model was established using SMP30KO mice incapable of ascorbate biosynthesis. Using this model, we revealed that oxidative stress impairs endotoxin tolerance potential in macrophages in vivo. Furthermore, gingival expression of endotoxin tolerance-related genes and TLR signaling negative regulators was decreased, and symptoms of ligature-induced periodontitis were aggravated in the oxidative stress mouse model. Our findings suggest that oxidative stress may contribute to periodontitis progression through endotoxin tolerance inhibition.


Asunto(s)
Lipopolisacáridos , Periodontitis , Humanos , Lipopolisacáridos/farmacología , Tolerancia a Endotoxinas , Peróxido de Hidrógeno , Estrés Oxidativo , Progresión de la Enfermedad , Porphyromonas gingivalis
15.
Microbes Infect ; 25(7): 105174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37348752

RESUMEN

BACKGROUND: It is largely unknown whether the gut microbiome regulates immune responses in humans. We determined relationships between the microbiota composition and immunological phenotypes in 108 healthy volunteers, using 16S sequencing, an ex vivo monocyte challenge model, and an in vivo challenge model of systemic inflammation induced by lipopolysaccharide (LPS). RESULTS: Significant associations were observed between the microbiota composition and ex vivo monocytic cytokine responses induced by several stimuli, most notably IL-10 production induced by Pam3Cys, Pseudomonas aeruginosa and Candida albicans, although the explained variance was rather low (0.3-4.8%). Furthermore, a number of pairwise correlations between Blautia, Bacteroides and Prevotella genera and cytokine production induced by these stimuli were identified. LPS administration induced a profound transient in vivo inflammatory response. A second LPS challenge one week after the first resulted in a severely blunted response, reflecting endotoxin tolerance. However, no significant relationships between microbiota composition and in vivo parameters of inflammation or tolerance were found (explained variance ranging from 0.4 to 1.5%, ns). CONCLUSIONS: The gut microbiota composition explains a limited degree of variance in ex vivo monocytic cytokine responses to several pathogenic stimuli, but no relationships with the LPS-induced in vivo immune response or tolerance was observed.


Asunto(s)
Endotoxinas , Microbioma Gastrointestinal , Humanos , Endotoxinas/toxicidad , Lipopolisacáridos , Tolerancia a Endotoxinas , Citocinas , Inflamación , Inmunidad
16.
J Immunol Res ; 2023: 5990156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032653

RESUMEN

As a protective mechanism regulating excessive inflammation, endotoxin tolerance plays a vital role in regulating endotoxin shock. Kupffer cells are players in mediating endotoxin tolerance. Nonetheless, the regulatory mechanism regulating endotoxin tolerance is barely known. A nonclassical IKK kinase called TRAF-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) can regulate inflammation. Here, we found that TBK1 is required for endotoxin tolerance in Kupffer cells. TBK1 plays a dominant role in regulating endotoxin tolerance by negatively regulating the induction of p100 processing. Deltex E3 ubiquitin ligase 4 (DTX4), a negative regulator of TBK1, can promote TBK1 K48-mediated ubiquitination and indirectly regulate endotoxin tolerance in Kupffer cells. We demonstrate that the c-Myb transcription factor could negatively regulate DTX4. Overexpression of c-Myb can be used to reduce the ubiquitination of TBK1 by reducing DTX4 transcription and to boost the anti-inflammatory effect of endotoxin tolerance. Thus, this study reveals a novel theory of TBK1-mediated endotoxin tolerance in Kupffer cells.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Macrófagos del Hígado/metabolismo , Tolerancia a Endotoxinas , Inflamación
17.
Int Immunopharmacol ; 118: 110146, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037116

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is involved in suppression of the development of endotoxin tolerance, which is a driver of the immunosuppression induced by sepsis. However, the mechanism by which AMPK inhibits the development of endotoxin tolerance has not been clearly elucidated. Therefore, the present study was performed to investigate the mechanism by which the AMPK activator, metformin, inhibits the development of endotoxin tolerance. Lipopolysaccharide (LPS) increased the production of transforming growth factor (TGF)-ß1 in macrophages, which was inhibited by metformin and resveratrol. Knockdown of AMPKα1 inhibited the suppressive effect of metformin on LPS-induced TGF-ß1 production. TGF-ß neutralizing antibody and TGF-ß type I receptor inhibitor increased the production of TNF-α and IL-6 via LPS restimulation in tolerized macrophages. LPS increased Smad2 phosphorylation, but this was inhibited in cells treated with TGF-ß neutralizing antibody or metformin. Smad2 knockdown inhibited the development of endotoxin tolerance, as evidenced by increased TNF-α production in response to LPS restimulation in tolerized macrophages. TGF-ß1 expression was increased, and the levels of TNF-α and IL-6 production induced by LPS stimulation were decreased, in splenocytes of cecal ligation and puncture (CLP) model mice compared to sham-operated controls. However, metformin treatment suppressed the production of TGF-ß1, and enhanced the production of TNF-α and IL-6 induced by LPS stimulation in splenocytes of CLP mice. These results indicated that AMPK activation inhibits LPS-induced TGF-ß1 production and its signaling pathway, thus suppressing the development of endotoxin tolerance in macrophages.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metformina , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Tolerancia a Endotoxinas , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Metformina/farmacología , Metformina/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Mol Med (Berl) ; 101(1-2): 183-195, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36790534

RESUMEN

Higher endotoxin in the circulation may indicate a compromised state of host immune response against coinfections in severe COVID-19 patients. We evaluated the inflammatory response of monocytes from COVID-19 patients after lipopolysaccharide (LPS) challenge. Whole blood samples of healthy controls, patients with mild COVID-19, and patients with severe COVID-19 were incubated with LPS for 2 h. Severe COVID-19 patients presented higher LPS and sCD14 levels in the plasma than healthy controls and mild COVID-19 patients. In non-stimulated in vitro condition, severe COVID-19 patients presented higher inflammatory cytokines and PGE-2 levels and CD14 + HLA-DRlow monocytes frequency than controls. Moreover, severe COVID-19 patients presented higher NF-κB p65 phosphorylation in CD14 + HLA-DRlow, as well as higher expression of TLR-4 and NF-κB p65 phosphorylation in CD14 + HLA-DRhigh compared to controls. The stimulation of LPS in whole blood of severe COVID-19 patients leads to lower cytokine production but higher PGE-2 levels compared to controls. Endotoxin challenge with both concentrations reduced the frequency of CD14 + HLA-DRlow in severe COVID-19 patients, but the increases in TLR-4 expression and NF-κB p65 phosphorylation were more pronounced in both CD14 + monocytes of healthy controls and mild COVID-19 patients compared to severe COVID-19 group. We conclude that acute SARS-CoV-2 infection is associated with diminished endotoxin response in monocytes. KEY MESSAGES: Severe COVID-19 patients had higher levels of LPS and systemic IL-6 and TNF-α. Severe COVID-19 patients presented higher CD14+HLA-DRlow monocytes. Increased TLR-4/NF-κB axis was identified in monocytes of severe COVID-19. Blunted production of cytokines after whole blood LPS stimulation in severe COVID-19. Lower TLR-4/NF-κB activation in monocytes after LPS stimulation in severe COVID-19.


Asunto(s)
COVID-19 , Monocitos , Humanos , Monocitos/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Tolerancia a Endotoxinas , Lipopolisacáridos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antígenos HLA-DR/metabolismo , Receptores de Lipopolisacáridos/metabolismo
19.
Immun Inflamm Dis ; 11(7): e925, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506157

RESUMEN

INTRODUCTION: Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS: Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1ß, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS: Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1ß in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS: These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.


Asunto(s)
MicroARNs , Sepsis , Humanos , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Tolerancia a Endotoxinas , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Endotoxinas , MicroARNs/genética
20.
Shock ; 57(6): 180-190, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066510

RESUMEN

BACKGROUND: Limited studies have functionally evaluated the heterogeneity in early ex vivo immune responses during sepsis. Our aim was to characterize early sepsis ex vivo functional immune response heterogeneity by studying whole blood endotoxin responses and derive a transcriptional metric of ex vivo endotoxin response. METHODS: Blood collected within 24 h of hospital presentation from 40 septic patients was divided into two fractions and incubated with media (unstimulated) or endotoxin. Supernatants and cells were isolated, and responses measured using: supernatant cytokines, lung endothelial permeability after supernatant exposure, and RNA expression. A transcriptomic signature was derived in unstimulated cells to predict the ex vivo endotoxin response. The signature was tested in a separate cohort of 191 septic patients to evaluate for association with clinical outcome. Plasma biomarkers were quantified to measure in vivo host inflammation. RESULTS: Ex vivo response to endotoxin varied and was unrelated to immunosuppression, white blood cell count, or the causative pathogen. Thirty-five percent of patients demonstrated a minimal response to endotoxin, suggesting early immunosuppression. High ex vivo cytokine production by stimulated blood cells correlated with increased in vitro pulmonary endothelial cell permeability and was associated with attenuated in vivo host inflammation. A four-gene signature of endotoxin response detectable without the need for a functional assay was identified. When tested in a separate cohort of septic patients, its expression was inversely associated with hospital mortality. CONCLUSIONS: An attenuated ex vivo endotoxin response in early sepsis is associated with greater host in vivo inflammation and a worse clinical outcome.


Asunto(s)
Sepsis , Transcriptoma , Tolerancia a Endotoxinas , Endotoxinas , Humanos , Tolerancia Inmunológica , Inmunidad , Inflamación , Lipopolisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA