Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Mol Microbiol ; 117(4): 837-850, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34967475

RESUMEN

Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes. We previously identified double membrane vesicles (DMVs) in the cytoplasm of cells infected with Berne virus (BEV), the prototype member of the Torovirus genus (Nidovirales Order). Our previous analysis by transmission electron microscopy suggested that the DMVs form a reticulovesicular network (RVN) analogous those described for the related severe acute respiratory syndrome coronavirus (SARS-CoV-1). Here, we used serial sectioning and electron tomography to characterize the architecture of torovirus replication organelles, and to learn about their biogenesis and dynamics during the infection. The formation of a RVN in BEV infected cells was confirmed, where the outer membranes of the DMVs are interconnected with each other and with the ER. Paired or zippered ER membranes connected with the DMVs were also observed, and likely represent early structures that evolve to give rise to DMVs. Also, paired membranes forming small spherule-like invaginations were observed at late time post-infection. Although resembling in size, the tomographic analysis show that these structures are clearly different from the true spherules described previously for coronaviruses. Hence, BEV shows important similarities, but also some differences, in the architecture of the replication organelles with other nidoviruses.


Asunto(s)
Torovirus , Tomografía con Microscopio Electrónico , Retículo Endoplásmico , Replicación Viral
2.
J Virol ; 96(3): e0156121, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817201

RESUMEN

Historically part of the coronavirus (CoV) family, torovirus (ToV) was recently classified in the new family Tobaniviridae. While reverse genetics systems have been established for various CoVs, none exist for ToVs. Here, we developed a reverse genetics system using an infectious full-length cDNA clone of bovine ToV (BToV) in a bacterial artificial chromosome (BAC). Recombinant BToV harboring genetic markers had the same phenotype as wild-type (wt) BToV. To generate two types of recombinant virus, the hemagglutinin-esterase (HE) gene was edited, as cell-adapted wtBToV generally loses full-length HE (HEf), resulting in soluble HE (HEs). First, recombinant viruses with HEf and hemagglutinin (HA)-tagged HEf or HEs genes were rescued. These exhibited no significant differences in their effect on virus growth in HRT18 cells, suggesting that HE is not essential for viral replication in these cells. Thereafter, we generated a recombinant virus (rEGFP) wherein HE was replaced by the enhanced green fluorescent protein (EGFP) gene. rEGFP expressed EGFP in infected cells but showed significantly lower levels of viral growth than wtBToV. Moreover, rEGFP readily deleted the EGFP gene after one passage. Interestingly, rEGFP variants with two mutations (C1442F and I3562T) in nonstructural proteins (NSPs) that emerged during passage exhibited improved EGFP expression, EGFP gene retention, and viral replication. An rEGFP into which both mutations were introduced displayed a phenotype similar to that of these variants, suggesting that the mutations contributed to EGFP gene acceptance. The current findings provide new insights into BToV, and reverse genetics will help advance the current understanding of this neglected pathogen. IMPORTANCE ToVs are diarrhea-causing pathogens detected in various species, including humans. Through the development of a BAC-based BToV, we introduced the first reverse genetics system for Tobaniviridae. Utilizing this system, recombinant BToVs with a full-length HE gene were generated. Remarkably, although clinical BToVs generally lose the HE gene after a few passages, some recombinant viruses generated in the current study retained the HE gene for up to 20 passages while accumulating mutations in NSPs, which suggested that these mutations may be involved in HE gene retention. The EGFP gene of recombinant viruses was unstable, but rEGFP into which two NSP mutations were introduced exhibited improved EGFP expression, gene retention, and viral replication. These data suggested the existence of an NSP-based acceptance or retention mechanism for exogenous RNA or HE genes. Recombinant BToVs and reverse genetics are powerful tools for understanding fundamental viral processes, pathogenesis, and BToV vaccine development.


Asunto(s)
ADN Complementario , Genoma Viral , Genética Inversa , Torovirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Células Cultivadas , Cromosomas Artificiales Bacterianos , Clonación Molecular , Genes Reporteros , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Mutación , Plásmidos/genética , Torovirus/aislamiento & purificación , Infecciones por Torovirus , Transfección
3.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177195

RESUMEN

Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although historically, it belonged to the Coronavirus (CoV) family. The nucleocapsid (N) proteins of CoVs are predominantly localized in the cytoplasm, where the viruses replicate, but in some cases the proteins are partially located in the nucleolus. Many studies have investigated the subcellular localization and nucleocytoplasmic trafficking signals of the CoV N proteins, but little is known about ToV N proteins. Here, we studied the subcellular localization of the bovine ToV (BToV) N protein (BToN) and characterized its nucleocytoplasmic trafficking signals. Unlike other CoVs, BToN in infected cells was transported mainly to the nucleolus during early infection but was distributed predominantly in the nucleoplasm rather than in the nucleolus during late infection. Interestingly, a small quantity of BToN was detected in the cytoplasm during infection. Examination of a comprehensive set of substitution or deletion mutants of BToN fused with enhanced green fluorescent protein (EGFP) revealed that clusters of arginine (R) residues comprise nuclear/nucleolar localization signals (NLS/NoLS), and the C-terminal region served as a chromosomal maintenance 1 (CRM1)-independent nuclear export signal (NES). Moreover, recombinant viruses with mutations in the NLS/NoLS, but retaining nuclear accumulation, were successfully rescued and showed slightly reduced growth ability, while the virus that lost the NLS/NoLS-mediated nuclear accumulation of BToN was not rescued. These results indicate that BToN uniquely accumulates mainly in nuclear compartments during infection, regulated by an R-rich NLS/NoLS and a CRM1-independent NES, and that the BToN accumulation in the nuclear compartment driven by NLS/NoLS is important for virus growth.IMPORTANCE ToVs are diarrhea-causing pathogens detected in many species, including humans. BToV has spread worldwide, leading to economic loss, and there is currently no treatment or vaccine available. Positive-stranded RNA viruses, including ToVs, replicate in the cytoplasm, and their structural proteins generally accumulate in the cytoplasm. Interestingly, BToN accumulated predominantly in the nucleus/nucleolus during all infectious processes, with only a small fraction accumulating in the cytoplasm despite being a major structural protein. Furthermore, we identified unique nucleocytoplasmic trafficking signals and demonstrated the importance of NLS/NoLS for virus growth. This study is the first to undertake an in-depth investigation of the subcellular localization and intracellular trafficking signals of BToN. Our findings additionally suggest that the NLS/NoLS-mediated nuclear accumulation of BToN is important for virus replication. An understanding of the unique features of BToV may provide novel insights into the assembly mechanisms of not only ToVs but also other positive-stranded RNA viruses.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Torovirus/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Mutación , Señales de Exportación Nuclear , Señales de Localización Nuclear , Proteínas de la Nucleocápside/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Torovirus/crecimiento & desarrollo , Torovirus/metabolismo , Replicación Viral/genética
4.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727876

RESUMEN

The 3C-like protease (3CLpro) of nidovirus plays an important role in viral replication and manipulation of host antiviral innate immunity, which makes it an ideal antiviral target. Here, we characterized that porcine torovirus (PToV; family Tobaniviridae, order Nidovirales) 3CLpro autocatalytically releases itself from the viral precursor protein by self-cleavage. Site-directed mutagenesis suggested that PToV 3CLpro, as a serine protease, employed His53 and Ser160 as the active-site residues. Interestingly, unlike most nidovirus 3CLpro, the P1 residue plays a less essential role in N-terminal self-cleavage of PToV 3CLpro Substituting either P1 or P4 residue of substrate alone has little discernible effect on N-terminal cleavage. Notably, replacement of the two residues together completely blocks N-terminal cleavage, suggesting that N-terminal self-cleavage of PToV 3CLpro is synergistically affected by both P1 and P4 residues. Using a cyclized luciferase-based biosensor, we systematically scanned the polyproteins for cleavage sites and identified (FXXQ↓A/S) as the main consensus sequences. Subsequent homology modeling and biochemical experiments suggested that the protease formed putative pockets S1 and S4 between the substrate. Indeed, mutants of both predicted S1 (D159A, H174A) and S4 (P62G/L185G) pockets completely lost the ability of cleavage activity of PToV 3CLpro In conclusion, the characterization of self-processing activities and substrate specificities of PToV 3CLpro will offer helpful information for the mechanism of nidovirus 3C-like proteinase's substrate specificities and the rational development of the antinidovirus drugs.IMPORTANCE Currently, the active-site residues and substrate specificities of 3C-like protease (3CLpro) differ among nidoviruses, and the detailed catalytic mechanism remains largely unknown. Here, porcine torovirus (PToV) 3CLpro cleaves 12 sites in the polyproteins, including its N- and C-terminal self-processing sites. Unlike coronaviruses and arteriviruses, PToV 3CLpro employed His53 and Ser160 as the active-site residues that recognize a glutamine (Gln) at the P1 position. Surprisingly, mutations of P1-Gln impaired the C-terminal self-processing but did not affect N-terminal self-processing. The "noncanonical" substrate specificity for its N-terminal self-processing was attributed to the phenylalanine (Phe) residue at the P4 position in the N-terminal site. Furthermore, a double glycine (neutral) substitution at the putative P4-Phe-binding residues (P62G/L185G) abolished the cleavage activity of PToV 3CLpro suggested the potential hydrophobic force between the PToV 3CLpro and P4-Phe side chains.


Asunto(s)
Proteasas 3C de Coronavirus/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Infecciones por Torovirus/embriología , Torovirus/enzimología , Animales , Proteasas 3C de Coronavirus/genética , Células HEK293 , Humanos , Especificidad por Sustrato , Porcinos , Torovirus/genética , Infecciones por Torovirus/genética
5.
Arch Virol ; 166(7): 2017-2025, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33881617

RESUMEN

Bovine torovirus (BToV) is an important diarrhea-causing pathogen affecting bovines. To facilitate BToV detection, a reverse transcription insulated isothermal PCR (RT-iiPCR) assay was developed that targets the BToV M gene with high specificity and reproducibility. The assay has a limit of detection of 23 copies/µL. Out of 69 diarrheic fecal samples from yaks collected on six farms in Tibet and Sichuan provinces in China, 11.59% (8/69) tested positive for BToV using this assay. The full-length spike (S) and hemagglutinin-esterase (HE) genes of three positive samples were subsequently sequenced. Notably, an identical recombination event was identified in the S1 subunit of the S protein of three isolates. All of the HE genes were found to belong to genotype III and shared the same unique aa variation (P44S) in the esterase domain. This study is the first confirmation of BToV in yaks and the first report of an S gene recombination event in BToV. Our findings will enhance the current understanding of the molecular characteristics and genetic evolution of BToV.


Asunto(s)
Enfermedades de los Bovinos/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transcripción Reversa/genética , Infecciones por Torovirus/virología , Torovirus/genética , Animales , Bovinos , China , Heces/virología , Genes Virales/genética , Genotipo , Filogenia , ARN Viral/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , Tibet , Infecciones por Torovirus/veterinaria , Proteínas Virales/genética
6.
Arch Virol ; 165(7): 1577-1583, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32388597

RESUMEN

Bovine torovirus (BToV) is a diarrhea-causing pathogen. In this study, 92 diarrheic fecal samples from five farms in four provinces in China were collected and tested for BToV using a RT-PCR assay, and 21.73% samples were found to be BToV positive. Moreover, two complete BToV genome sequences (MN073058 and MN073059) were obtained from the clinical samples, which were 28,297 and 28,301 nucleotides in length, respectively. Sequence analysis showed that the two isolates shared 10 identical amino acid mutations in the S protein compared to the complete S sequences of BToV available in the GenBank database. In addition, seven consecutive amino acid mutations were found from aa 1,486 to 1,492 in the S protein of isolate MN073058. Moreover, the two isolates shared one identical amino acid mutation in the receptor binding sites of the HE protein. To the best of our knowledge, this is the first report on the epidemic and genomic characterization of BToV in China, which is helpful for further understanding the genetic evolution of BToV.


Asunto(s)
Enfermedades de los Bovinos/virología , Diarrea/veterinaria , Infecciones por Torovirus/veterinaria , Torovirus/aislamiento & purificación , Animales , Bovinos , Diarrea/virología , Heces/virología , Genoma Viral , Genómica , Filogenia , Torovirus/clasificación , Torovirus/genética , Infecciones por Torovirus/virología , Proteínas Virales/genética
7.
Arch Virol ; 165(2): 471-477, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863265

RESUMEN

We sequenced the complete genome of a porcine torovirus (PToV) strain from Japan for the first time. Whole-genome analysis revealed that this strain (Iba/2018) has a mosaic sequence composed of at least three genome backgrounds, related to US, Chinese and German PToV strains. Clear recombination breakpoints were detected in the M and HE coding regions. A similarity plot and structural analysis demonstrated that the HE coding region exhibits the highest diversity, and the most sequence variation was found in the lectin domain. PToVs were divided into two lineages in the HE region, whereas clear lineages were not found in other regions.


Asunto(s)
Heces/virología , Genoma Viral , Infecciones por Torovirus/veterinaria , Torovirus/genética , Torovirus/aislamiento & purificación , Secuenciación Completa del Genoma , Animales , Biología Computacional , Evolución Molecular , Humanos , Japón , Recombinación Genética , Porcinos , Infecciones por Torovirus/virología
8.
BMC Vet Res ; 16(1): 272, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758221

RESUMEN

BACKGROUND: Coronaviruses are notorious pathogens that cause diarrheic and respiratory diseases in humans and animals. Although the epidemiology and pathogenicity of coronaviruses have gained substantial attention, little is known about bovine coronavirus in cattle, which possesses a close relationship with human coronavirus. Bovine torovirus (BToV) is a newly identified relevant pathogen associated with cattle diarrhoea and respiratory diseases, and its epidemiology in the Chinese cattle industry remains unknown. RESULTS: In this study, a total of 461 diarrhoeic faecal samples were collected from 38 different farms in three intensive cattle farming regions and analysed. Our results demonstrated that BToV is present in China, with a low prevalence rate of 1.74% (8/461). The full-length spike genes were further cloned from eight clinical samples (five farms in Henan Province). Phylogenetic analysis showed that two different subclades of BToV strains are circulating in China. Meanwhile, the three BToV strains identified from dairy calves, 18,307, 2YY and 5YY, all contained the amino acid variants R614Q, I801T, N841S and Q885E. CONCLUSIONS: This is the first report to confirm the presence of BToV in beef and dairy calves in China with diarrhea, which extend our understanding of the epidemiology of BToVs worldwide.


Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Torovirus/veterinaria , Torovirus/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , China/epidemiología , Diarrea/epidemiología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Filogenia , ARN Viral , Análisis de Secuencia de ADN , Torovirus/genética , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/virología , Proteínas Virales/genética
9.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604730

RESUMEN

The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most ß-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein-carbohydrate interaction (PCI) or lectin-carbohydrate interaction (LCI). The HE gene was transmitted to a ß-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA-specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA-ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the ß-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein-glycan interaction and PCI stereochemistry potentiate the SA-ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/virología , Evolución Molecular , Interacciones Microbiota-Huesped/fisiología , Neumonía Viral/virología , Receptores Virales/metabolismo , Internalización del Virus , Acetilesterasa/metabolismo , Animales , Betacoronavirus/genética , Sitios de Unión , COVID-19 , Línea Celular , Coronavirus/genética , Esterasas , Transferencia de Gen Horizontal , Glicosaminoglicanos/metabolismo , Hemaglutininas Virales/genética , Humanos , Lectinas/metabolismo , Pandemias , Polisacáridos , Receptores Virales/química , SARS-CoV-2 , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Torovirus , Proteínas Virales de Fusión/genética
10.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950409

RESUMEN

The genus Torovirus (subfamily Torovirinae, family Coronaviridae, order Nidovirales) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.IMPORTANCE Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.


Asunto(s)
Perfilación de la Expresión Génica , Biosíntesis de Proteínas , Torovirus/crecimiento & desarrollo , Torovirus/genética , Transcripción Genética , Proteínas Virales/biosíntesis , Animales , Células Cultivadas , Caballos , Interacciones Huésped-Patógeno , Análisis de Secuencia de ARN , Proteínas Virales/genética , Cultivo de Virus
11.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28490584

RESUMEN

Enteroviruses (EVs) are implicated in a wide range of diseases in humans and animals. In this study, a novel enterovirus (enterovirus species G [EVG]) (EVG 08/NC_USA/2015) was isolated from a diagnostic sample from a neonatal pig diarrhea case and identified by using metagenomics and complete genome sequencing. The viral genome shares 75.4% nucleotide identity with a prototypic EVG strain (PEV9 UKG/410/73). Remarkably, a 582-nucleotide insertion, flanked by 3Cpro cleavage sites at the 5' and 3' ends, was found in the 2C/3A junction region of the viral genome. This insertion encodes a predicted protease with 54 to 68% amino acid identity to torovirus (ToV) papain-like protease (PLP) (ToV-PLP). Structural homology modeling predicts that this protease adopts a fold and a catalytic site characteristic of minimal PLP catalytic domains. This structure is similar to those of core catalytic domains of the foot-and-mouth disease virus leader protease and coronavirus PLPs, which act as deubiquitinating and deISGylating (interferon [IFN]-stimulated gene 15 [ISG15]-removing) enzymes on host cell substrates. Importantly, the recombinant ToV-PLP protein derived from this novel enterovirus also showed strong deubiquitination and deISGylation activities and demonstrated the ability to suppress IFN-ß expression. Using reverse genetics, we generated a ToV-PLP knockout recombinant virus. Compared to the wild-type virus, the ToV-PLP knockout mutant virus showed impaired growth and induced higher expression levels of innate immune genes in infected cells. These results suggest that ToV-PLP functions as an innate immune antagonist; enterovirus G may therefore gain fitness through the acquisition of ToV-PLP from a recombination event.IMPORTANCE Enteroviruses comprise a highly diversified group of viruses. Genetic recombination has been considered a driving force for viral evolution; however, recombination between viruses from two different orders is a rare event. In this study, we identified a special case of cross-order recombination between enterovirus G (order Picornavirales) and torovirus (order Nidovirales). This naturally occurring recombination event may have broad implications for other picornaviral and/or nidoviral species. Importantly, we demonstrated that the exogenous ToV-PLP gene that was inserted into the EVG genome encodes a deubiquitinase/deISGylase and potentially suppresses host cellular innate immune responses. Our results provide insights into how a gain of function through genetic recombination, in particular cross-order recombination, may improve the ability of a virus to evade host immunity.


Asunto(s)
Enzimas Desubicuitinizantes/genética , Enterovirus/enzimología , Enterovirus/genética , Heces/virología , Mutagénesis Insercional , Torovirus/enzimología , Torovirus/genética , Animales , Animales Recién Nacidos , Diarrea/veterinaria , Enterovirus/aislamiento & purificación , Metagenómica , ARN Viral/genética , Recombinación Genética , Análisis de Secuencia de ADN , Porcinos , Enfermedades de los Porcinos/virología , Estados Unidos
12.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003490

RESUMEN

Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHVMut) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHVMut in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHVMut replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target.


Asunto(s)
Endorribonucleasas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Virus de la Hepatitis Murina/enzimología , Hidrolasas Diéster Fosfóricas/fisiología , Torovirus/enzimología , Proteínas no Estructurales Virales/fisiología , Nucleótidos de Adenina/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Secuencia Conservada , Cricetinae , Activación Enzimática , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligorribonucleótidos/química , Hidrolasas Diéster Fosfóricas/química , Proteínas no Estructurales Virales/química , Replicación Viral
13.
Arch Virol ; 163(9): 2471-2476, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29786119

RESUMEN

Recombination occurs frequently between enteroviruses (EVs) which are classified within the same species of the Picornaviridae family. Here, using viral metagenomics, the genomes of two recombinant EV-Gs (strains EVG 01/NC_CHI/2014 and EVG 02/NC_CHI/2014) found in the feces of pigs from a swine farm in China are described. The two strains are characterized by distinct insertion of a papain-like protease gene from toroviruses classified within the Coronaviridae family. According to recent reports the site of the torovirus protease insertion was located at the 2C/3A junction region in EVG 02/NC_CHI/2014. For the other variant EVG 01/NC_CHI/2014, the inserted protease sequence replaced the entire viral capsid protein region up to the VP1/2A junction. These two EV-G strains were highly prevalent in the same pig farm with all animals shedding the full-length genome (EVG 02/NC_CHI/2014) while 65% also shed the capsid deletion mutant (EVG 01/NC_CHI/2014). A helper-defective virus relationship between the two co-circulating EV-G recombinants is hypothesized.


Asunto(s)
Infecciones por Enterovirus/veterinaria , Enterovirus Porcinos/genética , Genoma Viral , Virus Reordenados/genética , Enfermedades de los Porcinos/epidemiología , Infecciones por Torovirus/veterinaria , Torovirus/genética , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , China/epidemiología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Enterovirus Porcinos/clasificación , Enterovirus Porcinos/metabolismo , Granjas , Heces/virología , Eliminación de Gen , Variación Genética , Metagenómica/métodos , Filogenia , Prevalencia , Virus Reordenados/clasificación , Virus Reordenados/metabolismo , Recombinación Genética , Porcinos , Enfermedades de los Porcinos/virología , Torovirus/clasificación , Torovirus/metabolismo , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Cell Microbiol ; 18(12): 1691-1708, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27218226

RESUMEN

Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes containing the replicase proteins, the viral RNA and host proteins. The formation of the replication and transcription complexes (RTCs) through the rearrangement of cellular membranes is currently being actively studied for viruses belonging to different viral families. In this work, we identified double-membrane vesicles (DMVs) in the cytoplasm of cells infected with the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae family, Nidovirales order). Using confocal microscopy and transmission electron microscopy, we observed a close relationship between the RTCs and the DMVs of BEV. The examination of BEV-infected cells revealed that the replicase proteins colocalize with each other and with newly synthesized RNA and are associated to the membrane rearrangement induced by BEV. However, the double-stranded RNA, an intermediate of viral replication, is exclusively limited to the interior of DMVs. Our results with BEV resemble those obtained with other related viruses in the Nidovirales order, thus providing new evidence to support the idea that nidoviruses share a common replicative structure based on the DMV arranged clusters.


Asunto(s)
Vesículas Citoplasmáticas/ultraestructura , Membranas Intracelulares/ultraestructura , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Torovirus/ultraestructura , Proteínas Virales/genética , Replicación Viral , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Membrana Celular/virología , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/virología , Dermis , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/virología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Fibroblastos/virología , Regulación Viral de la Expresión Génica , Caballos , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , Microscopía Electrónica de Transmisión , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Transducción de Señal , Torovirus/genética , Torovirus/metabolismo , Proteínas Virales/metabolismo
15.
BMC Vet Res ; 11: 202, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268320

RESUMEN

BACKGROUND: Bovine coronavirus (BCoV) together with bovine torovirus (BToV), both members of the Coronaviridae family, order Nidovirales are the most common viral enteric pathogens. Although studied separately, their joint occurrence and the molecular diversity in cattle in Croatia have not been investigated. METHODS: A survey is carried out on 101 fecal samples from diarrheic young and adult cattle during the 3-year period from i) one large dairy herd, ii) four small herds and iii) three nasal and paired fecal samples from calves with symptoms of respiratory disease. Samples were submitted to RT-PCR and sequencing for BCoV Nucleocapsid gene, BCoV Spike gene and BToV Spike gene. RESULTS: BCoV was detected in 78.8 % of fecal samples from symptomatic cattle and three nasal and paired fecal samples from calves with respiratory symptoms. BToV was detected in 43.2 % of fecal samples from symptomatic cattle and a fecal sample from calves with respiratory symptoms. Molecular characterisation of those viruses revealed some nucleotide and aminoacid differences in relation to reference strains. CONCLUSIONS: BToV should be regarded as a relevant pathogen for cattle that plays a synergistic role in mixed enteric infections.


Asunto(s)
Enfermedades de los Bovinos/virología , Infecciones por Coronavirus/veterinaria , Coronavirus Bovino/aislamiento & purificación , Infecciones por Torovirus/veterinaria , Torovirus/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Coronavirus Bovino/genética , Croacia/epidemiología , ADN Complementario/genética , ADN Viral/genética , Diarrea/epidemiología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Filogenia , Alineación de Secuencia , Torovirus/genética , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/virología
16.
Virol J ; 11: 106, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24903213

RESUMEN

BACKGROUND: Porcine torovirus (PToV) is a member of the genus Torovirus which is responsible for gastrointestinal disease in both human beings and animals with particular prevalence in youth. Torovirus infections are generally asymptomatic, however, their presence may worsen disease consequences in concurrent infections with other enteric pathogens. METHODS: A total of 872 diarrheic fecal samples from pigs of different ages were collected from 12 districts of Sichuan Province in the southwest of China. RT-PCR was done with PToV S gene specific primers to detect the presence of PToV positive samples. M gene specific primers were used with the PToV positive samples and the genes were sequenced. A phylogenetic tree was constructed based on the M gene nucleotide sequences from the 19 selected novel Sichuan strains and 21 PToV and BToV M gene sequences from GenBank. RESULTS: A total of 331 (37.96%, 331/872) samples were found to be positive for PToV and the highest prevalence was observed in piglets aged from 1 to 3 weeks old. Through phylogenetic inference the 40 PToV M gene containing sequences were placed into two genotypes (I & II). The 19 novel Sichuan strains of genotype I showed strong correlations to two Korean gene sequences (GU-07-56-11 and GU-07-56-22). Amino-acid sequence analysis of the 40 PToV M gene strains revealed that the M gene protein was highly conserved. CONCLUSIONS: This study uncovered the presence of PToV in Sichuan Province, and demonstrated the need for continuous surveillance PToV of epidemiology.


Asunto(s)
Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Infecciones por Torovirus/veterinaria , Torovirus/clasificación , Torovirus/genética , Animales , China/epidemiología , Análisis por Conglomerados , Diarrea/epidemiología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia , Porcinos , Torovirus/aislamiento & purificación , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/virología
17.
Arch Virol ; 159(4): 773-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24122107

RESUMEN

In this study, we amplified and sequenced the first genome of porcine torovirus (PToV SH1 strain). The genome was found to be 28,301 bp in length, sharing 79 % identity with Breda virus. It mainly consists of replicase (20,906 bp) and structural genes: spike (4,722 bp), membrane (702 bp), hemagglutinin-esterase (1,284 bp), and nucleocapsid (492 bp). Sequence alignments and structure prediction suggest genetic differences among toroviruses, mainly in NSP1 (papain-like cysteine proteinase domain). Rooted phylogenetic trees were constructed based on the 3C-like proteinase and RNA-dependent RNA polymerase genes. PToV, Berne virus and Breda virus were clustered together, forming a separate branch from white bream virus that was distant from that of the coronaviruses.


Asunto(s)
Genoma Viral , ARN Viral/genética , Análisis de Secuencia de ADN , Torovirus/clasificación , Torovirus/genética , Animales , Análisis por Conglomerados , Heces/virología , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Ácido Nucleico , Porcinos , Torovirus/aislamiento & purificación , Proteínas Virales/genética
18.
Arch Virol ; 159(7): 1623-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24420162

RESUMEN

Bovine torovirus (BToV), a member of the family Coronaviridae, is an established gastrointestinal infectious agent in cattle. In this study, we performed a survey to detect BToV in Turkey between 2009 and 2011 using 235 fecal samples from neonatal calves with diarrhea that were analyzed by the nested reverse transcription (RT) PCR method using primers located in the consensus sequences of the BToV membrane (M) gene. The BToV M gene was detected in 4.7 % (11/235) of the samples using the nested RT-PCR method. The nucleotide sequences of partial M fragments from the BToV isolates, including the newly identified Turkish isolates, showed more than 96 % identity. The result indicates that BToV is one of the pathogens that contribute to neonatal calf diarrhea cases in Turkey.


Asunto(s)
Enfermedades de los Bovinos/virología , Diarrea/veterinaria , Heces/virología , Infecciones por Torovirus/veterinaria , Torovirus/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Diarrea/virología , Filogenia , Torovirus/genética , Infecciones por Torovirus/epidemiología , Infecciones por Torovirus/virología , Turquía/epidemiología
19.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932127

RESUMEN

Bovine torovirus (BToV) is an enteric pathogen that may cause diarrhea in calves and adult cattle, which could result in economic losses due to weight loss and decreased milk production. This study aimed to report the presence, the genetic characterization and the evolution of BToV in calves in Uruguay. BToV was detected in 7.9% (22/278) of fecal samples, being identified in dairy (9.2%, 22/239) but not beef (0.0%, 0/39) calves. BToV was detected in both diarrheic (14%, 6/43) and non-diarrheic (13.2%, 5/38) dairy calves. In addition, BToV was detected in the intestinal contents of 14.9% (7/47) of naturally deceased dairy calves. A complete genome (28,446 nucleotides) was obtained, which was the second outside Asia and the first in Latin America. In addition, partial S gene sequences were obtained to perform evolutionary analyses. Nucleotide and amino acid substitutions within and between outbreaks/farms were observed, alerting the continuous evolution of the virus. Through Bayesian analysis using BEAST, a recent origin (mid-60s) of BToV, possibly in Asia, was estimated, with two introductions into Uruguay from Asia and Europe in 2004 and 2013, respectively. The estimated evolutionary rate was 1.80 × 10-3 substitutions/site/year. Our findings emphasize the importance of continued surveillance and genetic characterization for the effective management and understanding of BToV's global epidemiology and evolution.


Asunto(s)
Enfermedades de los Bovinos , Heces , Genoma Viral , Filogenia , Infecciones por Torovirus , Torovirus , Animales , Uruguay/epidemiología , Bovinos , Torovirus/genética , Torovirus/aislamiento & purificación , Torovirus/clasificación , Heces/virología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Infecciones por Torovirus/veterinaria , Infecciones por Torovirus/virología , Infecciones por Torovirus/epidemiología , Diarrea/virología , Diarrea/veterinaria , Diarrea/epidemiología , Evolución Molecular
20.
Vet J ; 305: 106122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641200

RESUMEN

The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.


Asunto(s)
Coronavirus , Genética Inversa , Torovirus , Animales , Genética Inversa/métodos , Porcinos , Bovinos , Torovirus/genética , Coronavirus/genética , Infecciones por Torovirus/veterinaria , Infecciones por Torovirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Bovinos/virología , Animales Domésticos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA