Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Immunol ; 221: 108616, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33148511

RESUMEN

In complement-driven thrombotic microangiopathies, failure to regulate complement activation leads to end-organ damage. The modified Ham (mHam) test measures complement-mediated killing of a nucleated cell in vitro but lacks a confirmatory assay and reliable positive controls. We demonstrate that C5b-9 accumulation on the surface of TF1 PIGAnull cells correlates with cell killing in the mHam. We also show that Sialidase treatment of cells or addition of Shiga toxin 1 to human serum serve as a more reliable positive control for the mHam than cobra venom factor or lipopolysaccharide. Simultaneously performing the mHam and measuring C5b-9 accumulation either in GVB++ or GVB0 MgEGTA buffer with the addition of complement pathway specific inhibitors (anti-C5 antibody or a factor D inhibitor, ACH-145951) can be used to localize defects in complement regulation. As more targeted complement inhibitors become available, these assays may aid in the selection of personalized treatments for patients with complement-mediated diseases.


Asunto(s)
Síndrome Antifosfolípido/inmunología , Síndrome Hemolítico Urémico Atípico/inmunología , Activación de Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Adulto , Bioensayo , Línea Celular Tumoral , Complemento C3c/inmunología , Complemento C4b/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Venenos Elapídicos/farmacología , Femenino , Humanos , Lipopolisacáridos/farmacología , Masculino , Persona de Mediana Edad , Neuraminidasa/farmacología , Fragmentos de Péptidos/inmunología , Toxina Shiga I/farmacología
2.
Biol Pharm Bull ; 41(9): 1475-1479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175782

RESUMEN

Shiga toxin (Stx) is a main virulence factor of Enterohemorrhagic Escherichia coli (EHEC) that causes diarrhea and hemorrhagic colitis and occasionally fatal systemic complications. Stx induces rapid apoptotic cell death in some cells, such as human myelogenous leukemia THP-1 cells expressing CD77, a receptor for Stx internalization, and the induction of apoptotic cell death is thought to be crucial for the fatal systemic complications. Therefore, in order to suppress the fatal toxicity, it is important to understand the mechanism how cells can escape from apoptotic cell death in the presence of Stx. In this study, we isolated resistant clones to Stx-induced apoptosis from highly sensitive THP-1 cells by continuous exposure with lethal dose of Stx. All of the ten resistant clones lost the expression of CD77 as a consequence of the reduction in CD77 synthase mRNA expression. These results suggest that downregulation of CD77 or CD77 synthase expression could be a novel approach to suppress the fatal toxicity of Stx in EHEC infected patient.


Asunto(s)
Galactosiltransferasas/genética , Leucemia Mieloide/metabolismo , Toxina Shiga I/farmacología , Toxina Shiga II/farmacología , Trihexosilceramidas/metabolismo , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Etopósido/farmacología , Humanos , Células THP-1
3.
J Cell Sci ; 128(15): 2891-902, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26071526

RESUMEN

Endocytosis is an essential cellular process that is often hijacked by pathogens and pathogenic products. Endocytic processes can be classified into two broad categories, those that are dependent on clathrin and those that are not. The SNARE proteins VAMP2, VAMP3 and VAMP8 are internalized in a clathrin-dependent manner. However, the full scope of their endocytic behavior has not yet been elucidated. Here, we found that VAMP2, VAMP3 and VAMP8 are localized on plasma membrane invaginations and very early uptake structures that are induced by the bacterial Shiga toxin, which enters cells by clathrin-independent endocytosis. We show that toxin trafficking into cells and cell intoxication rely on these SNARE proteins. Of note, the cellular uptake of VAMP3 is increased in the presence of Shiga toxin, even when clathrin-dependent endocytosis is blocked. We therefore conclude that VAMP2, VAMP3 and VAMP8 are removed from the plasma membrane by non-clathrin-mediated pathways, in addition to by clathrin-dependent uptake. Moreover, our study identifies these SNARE proteins as the first transmembrane trafficking factors that functionally associate at the plasma membrane with the toxin-driven clathrin-independent invaginations during the uptake process.


Asunto(s)
Endocitosis/fisiología , Transporte de Proteínas/fisiología , Proteínas R-SNARE/metabolismo , Toxina Shiga I/farmacología , Toxinas Shiga/farmacología , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Línea Celular , Membrana Celular/fisiología , Clatrina/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Unión Proteica/genética , Proteínas R-SNARE/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxinas Shiga/metabolismo , Transferrina/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 3 de Membrana Asociada a Vesículas/genética
4.
J Biol Chem ; 287(20): 16073-87, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22418442

RESUMEN

The verotoxin (VT) (Shiga toxin) receptor globotriaosyl ceramide (Gb(3)), mediates VT1/VT2 retrograde transport to the endoplasmic reticulum (ER) for cytosolic A subunit access to inhibit protein synthesis. Adamantyl Gb(3) is an amphipathic competitive inhibitor of VT1/VT2 Gb(3) binding. However, Gb(3)-negative VT-resistant CHO/Jurkat cells incorporate adaGb(3) to become VT1/VT2-sensitive. CarboxyadaGb(3), urea-adaGb(3), and hydroxyethyl adaGb(3), preferentially bound by VT2, also mediate VT1/VT2 cytotoxicity. VT1/VT2 internalize to early endosomes but not to Golgi/ER. AdabisGb(3) (two deacyl Gb(3)s linked to adamantane) protects against VT1/VT2 more effectively than adaGb(3) without incorporating into Gb(3)-negative cells. AdaGb(3) (but not hydroxyethyl adaGb(3)) incorporation into Gb(3)-positive Vero cells rendered punctate cell surface VT1/VT2 binding uniform and subverted subsequent Gb(3)-dependent retrograde transport to Golgi/ER to render cytotoxicity (reduced for VT1 but not VT2) brefeldin A-resistant. VT2-induced vacuolation was maintained in adaGb(3)-treated Vero cells, but vacuolar membrane VT2 was lost. AdaGb(3) destabilized membrane cholesterol and reduced Gb(3) cholesterol stabilization in phospholipid liposomes. Cholera toxin GM1-mediated Golgi/ER targeting was unaffected by adaGb(3). We demonstrate the novel, lipid-dependent, pseudoreceptor function of Gb(3) mimics and their structure-dependent modulation of endogenous intracellular Gb(3) vesicular traffic.


Asunto(s)
Adamantano/análogos & derivados , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Toxina Shiga I/farmacología , Toxina Shiga II/farmacología , Trihexosilceramidas/metabolismo , Trihexosilceramidas/farmacología , Adamantano/farmacología , Animales , Transporte Biológico Activo/efectos de los fármacos , Células CHO , Membrana Celular/metabolismo , Chlorocebus aethiops , Colesterol/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Relación Estructura-Actividad , Células Vero
5.
Blood ; 118(12): 3392-8, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21816831

RESUMEN

Diarrhea-associated hemolytic uremic syndrome (D(+)HUS) is caused by the ingestion of Escherichia coli that produce Shiga toxin (Stx), which is composed of a cytotoxic A subunit and pentameric B subunits that bind globotriaosylceramide on susceptible cells. Stx occurs in 2 types, Stx1 and Stx2. B subunits of either type stimulate von Willebrand factor (VWF) secretion from human umbilical vein endothelial cells (HUVECs), and Stx2B can cause thrombotic microangiopathy in Adamts13(-/-) mice. We have now determined that Stx1B and Stx2B activate different signaling pathways in HUVECs. VWF secretion induced by Stx1B is associated with a transient rise in intracellular Ca(2+) level that is blocked by chelation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, removal of extracellular Ca(2+), the phospholipase C inhibitor U73122, the protein kinase inhibitor staurosporine, or small interfering RNA knockdown of protein kinase Cα. In contrast, Stx2B-induced VWF secretion is associated with activation of protein kinase A (PKA) and is blocked by the PKA inhibitor H89 or small interfering RNA knockdown of PKA. Stx2B does not increase cAMP levels and may activate PKA by a cAMP-independent mechanism. The activation of distinct signaling pathways may be relevant to understanding why E coli that express Stx2 are more likely to cause D(+)HUS than are E coli expressing only Stx1.


Asunto(s)
Diarrea/metabolismo , Células Endoteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Síndrome Hemolítico-Urémico/metabolismo , Toxina Shiga I , Toxina Shiga II , Transducción de Señal , Factor de von Willebrand/metabolismo , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diarrea/microbiología , Diarrea/patología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Escherichia coli/química , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Silenciador del Gen/efectos de los fármacos , Síndrome Hemolítico-Urémico/microbiología , Síndrome Hemolítico-Urémico/patología , Humanos , Ratones , Unión Proteica , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Toxina Shiga I/efectos adversos , Toxina Shiga I/farmacología , Toxina Shiga II/efectos adversos , Toxina Shiga II/farmacología , Transducción de Señal/efectos de los fármacos , Trihexosilceramidas/metabolismo , Venas Umbilicales/citología
6.
Infect Immun ; 80(6): 2109-20, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22431646

RESUMEN

Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1ß (IL-1ß) and chemokines IL-8, growth-regulated protein-ß, macrophage inflammatory protein-1α (MIP-1α), and MIP-1ß. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Toxina Shiga I/farmacología , Estrés Fisiológico/efectos de los fármacos , Antracenos , Línea Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Flavonoides , Humanos , Imidazoles , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Piridinas , Factores de Tiempo
7.
J Biol Chem ; 285(46): 35505-18, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20837469

RESUMEN

Globotriaosylceramide (Gb3) is a well known receptor for Shiga toxin (Stx), produced by enterohemorrhagic Escherichia coli and Shigella dysenteriae. The expression of Gb3 also affects several diseases, including cancer metastasis and Fabry disease, which prompted us to look for factors involved in its metabolism. In the present study, we isolated two cDNAs that conferred resistance to Stx-induced cell death in HeLa cells by expression cloning: ganglioside GM3 synthase and the COOH terminus region of glutamate receptor, ionotropic, N-methyl-D-asparate-associated protein 1 (GRINA), a member of the transmembrane BAX inhibitor motif containing (TMBIM) family. Overexpression of the truncated form, named GRINA-C, and some members of the full-length TMBIM family, including FAS inhibitory molecule 2 (FAIM2), reduced Gb3, and lactosylceramide was accumulated instead. The change of glycolipid composition was restored by overexpression of Gb3 synthase, suggesting that the synthase is affected by GRINA-C and FAIM2. Interestingly, the mRNA level of Gb3 synthase was unchanged. Rather, localization of the synthase as well as TGN46, a trans-Golgi network marker, was perturbed to form punctate structures, and degradation of the synthase in lysosomes was enhanced. Furthermore, GRINA-C was associated with Gb3 synthase. These observations may demonstrate a new type of posttranscriptional regulation of glycosyltransferases.


Asunto(s)
Galactosiltransferasas/metabolismo , Globósidos/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Trihexosilceramidas/biosíntesis , Red trans-Golgi/metabolismo , Secuencia de Aminoácidos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/genética , Resistencia a Medicamentos/genética , Galactosiltransferasas/genética , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Unión Proteica , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Toxina Shiga I/farmacología , Transfección , Red trans-Golgi/enzimología
8.
Infect Immun ; 79(9): 3527-40, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21708996

RESUMEN

Shiga toxins (Stxs) are expressed by the enteric pathogens Shigella dysenteriae serotype 1 and certain serotypes of Escherichia coli. Stx-producing bacteria cause bloody diarrhea with the potential to progress to acute renal failure. Stxs are potent protein synthesis inhibitors and are the primary virulence factors responsible for renal damage that may follow diarrheal disease. We explored the use of the immortalized human proximal tubule epithelial cell line HK-2 as an in vitro model of Stx-induced renal damage. We showed that these cells express abundant membrane Gb(3) and are differentially susceptible to the cytotoxic action of Stxs, being more sensitive to Shiga toxin type 1 (Stx1) than to Stx2. At early time points (24 h), HK-2 cells were significantly more sensitive to Stxs than Vero cells; however, by 72 h, Vero cell monolayers were completely destroyed while some HK-2 cells survived toxin challenge, suggesting that a subpopulation of HK-2 cells are relatively toxin resistant. Fluorescently labeled Stx1 B subunits localized to both lysosomal and endoplasmic reticulum (ER) compartments in HK-2 cells, suggesting that differences in intracellular trafficking may play a role in susceptibility to Stx-mediated cytotoxicity. Although proinflammatory cytokines were not upregulated by toxin challenge, Stx2 selectively induced the expression of two chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1ß. Stx1 and Stx2 differentially activated components of the ER stress response in HK-2 cells. Finally, we demonstrated significant poly(ADP-ribose) polymerase (PARP) cleavage after exposure to Stx1 or Stx2. However, procaspase 3 cleavage was undetectable, suggesting that HK-2 cells may undergo apoptosis in response to Stxs in a caspase 3-independent manner.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Toxina Shiga I/farmacología , Toxina Shiga II/farmacología , Animales , Antígenos de Carbohidratos Asociados a Tumores/biosíntesis , Apoptosis/efectos de los fármacos , Caspasa 3/biosíntesis , Caspasa 3/efectos de los fármacos , Línea Celular , Quimiocina CCL3/biosíntesis , Quimiocina CCL3/efectos de los fármacos , Quimiocina CCL4/biosíntesis , Quimiocina CCL4/efectos de los fármacos , Chlorocebus aethiops , Retículo Endoplásmico/efectos de los fármacos , Escherichia coli/citología , Escherichia coli/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Toxina Shiga I/toxicidad , Toxina Shiga II/toxicidad , Shigella dysenteriae/citología , Shigella dysenteriae/metabolismo , Células Vero/efectos de los fármacos
9.
Exp Cell Res ; 316(4): 657-66, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19744479

RESUMEN

Shiga toxins (Stx) 1 and 2 are responsible for intestinal and systemic sequelae of infection by enterohemorrhagic Escherichia coli (EHEC). However, the mechanisms through which enterocytes are damaged remain unclear. While secondary damage from ischemia and inflammation are postulated mechanisms for all intestinal effects, little evidence excludes roles for more primary toxin effects on intestinal epithelial cells. We now document direct pathologic effects of Stx on intestinal epithelial cells. We study a well-characterized rabbit model of EHEC infection, intestinal tissue and stool samples from EHEC-infected patients, and T84 intestinal epithelial cells treated with Stx1. Toxin uptake by intestinal epithelial cells in vitro and in vivo causes galectin-3 depletion from enterocytes by increasing the apical galectin-3 secretion. This Shiga toxin-mediated galectin-3 depletion impairs trafficking of several brush border structural proteins and transporters, including villin, dipeptidyl peptidase IV, and the sodium-proton exchanger 2, a major colonic sodium absorptive protein. The mistargeting of proteins responsible for the absorptive function might be a key event in Stx1-induced diarrhea. These observations provide new evidence that human enterocytes are directly damaged by Stx1. Conceivably, depletion of galectin-3 from enterocytes and subsequent apical protein mistargeting might even provide a means whereby other pathogens might alter intestinal epithelial absorption and produce diarrhea.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Enterocitos/efectos de los fármacos , Infecciones por Escherichia coli/fisiopatología , Galectina 3/metabolismo , Proteínas de Microfilamentos/metabolismo , Toxina Shiga I/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Enterocitos/metabolismo , Escherichia coli Enterohemorrágica/fisiología , Humanos , Mucosa Intestinal/fisiopatología , Modelos Biológicos , Transporte de Proteínas , Conejos , Proteínas Recombinantes/genética , Toxina Shiga I/genética , Toxina Shiga I/metabolismo
10.
Biochem J ; 432(1): 173-80, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20809900

RESUMEN

The main cause of acute renal failure in children is HUS (haemolytic uraemic syndrome), a consequence of intestinal infections with Escherichia coli strains producing Stx (Shiga toxins). Stx released in the gut by the non-invasive bacteria reach the bloodstream and are targeted to cerebral and renal endothelium triggering HUS. PMN (polymorphonuclear leucocytes) seem to be involved in Stx delivery through an unidentified membrane receptor (Kd=10⁻8 M; 2×105 binding sites) which does not allow internalization. Some experts in the field have defined the Stx-PMN interaction as non-specific and of little biological significance. In the present study, we show that the A chain of ricin, the well-known plant RIP (ribosome-inactivating protein), interacts with PMN (Kd=10⁻9 M; 2×105 binding sites) competing for the same receptor that recognizes Stx, whereas diphtheria toxin and several agonists of TLRs (Toll-like receptors) or the mannose receptor were ineffective. No toxic effects of ricin A chain on PMN were observed, as assessed by measuring protein synthesis and the rate of spontaneous apoptosis of leucocytes. Moreover, two single-chain RIPs (gelonin and saporin S6) had the same competing effect. Thus RIPs and Stx1 share structural similarities, the same enzymatic activity and a common receptor on PMN. These observations reveal that the Stx-PMN interaction is specific, confirming that PMN recognize molecular patterns common to different foreign molecules.


Asunto(s)
Neutrófilos/metabolismo , Receptores de Superficie Celular/metabolismo , Ricina/metabolismo , Toxina Shiga I/metabolismo , Apoptosis/efectos de los fármacos , Unión Competitiva/efectos de los fármacos , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacología , Citometría de Flujo , Humanos , Radioisótopos de Yodo , Lectinas Tipo C/agonistas , Lectinas Tipo C/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/agonistas , Lectinas de Unión a Manosa/metabolismo , Neutrófilos/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ensayo de Unión Radioligante , Receptores de Superficie Celular/agonistas , Ricina/farmacología , Toxina Shiga I/farmacología , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
11.
Toxicology ; 441: 152531, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32593706

RESUMEN

Gene-regulatory networks reconstruction has become a very popular approach in applied biology to infer and dissect functional interactions of Transcription Factors (TFs) driving a defined phenotypic state, termed as Master Regulators (MRs). In the present work, cutting-edge bioinformatic methods were applied to re-analyze experimental data on leukemia cells (human myelogenous leukemia cell line THP-1 and acute myeloid leukemia MOLM-13 cells) treated for 6 h with two different Ribosome-Inactivating Proteins (RIPs), namely Shiga toxin type 1 (400 ng/mL) produced by Escherichia coli strains and the plant toxin stenodactylin (60 ng/mL), purified from the caudex of Adenia stenodactyla Harms. This analysis allowed us to identify the common early transcriptional response to 28S rRNA damage based on gene-regulatory network inference and Master Regulator Analysis (MRA). Both toxins induce a common response at 6 h which involves inflammatory mediators triggered by AP-1 family transcriptional factors and ATF3 in leukemia cells. We describe for the first time the involvement of MAFF, KLF2 and KLF6 in regulating RIP-induced apoptotic cell death, while receptor-mediated downstream signaling through ANXA1 and TLR4 is suggested for both toxins.


Asunto(s)
Redes Reguladoras de Genes/efectos de los fármacos , Leucemia/metabolismo , Proteínas Inactivadoras de Ribosomas/farmacología , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Lectinas/farmacología , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , N-Glicosil Hidrolasas/farmacología , Toxina Shiga I/farmacología , Factores de Transcripción/metabolismo
12.
Toxins (Basel) ; 12(5)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403276

RESUMEN

Shiga toxins (Stxs) expressed by the enterohaemorrhagic Escherichia coli and enteric Shigella dysenteriae 1 pathogens are protein synthesis inhibitors. Stxs have been shown to induce apoptosis via the activation of extrinsic and intrinsic pathways in many cell types (epithelial, endothelial, and B cells) but the link between the protein synthesis inhibition and caspase activation is still unclear. Endoplasmic reticulum (ER) stress induced by the inhibition of protein synthesis may be this missing link. Here, we show that the treatment of Burkitt lymphoma (BL) cells with verotoxin-1 (VT-1 or Stx1) consistently induced the ER stress response by activation of IRE1 and ATF6-two ER stress sensors-followed by increased expression of the transcription factor C/REB homologous protein (CHOP). However, our data suggest that, although ER stress is systematically induced by VT-1 in BL cells, its role in cell death appears to be cell specific and can be the opposite: ER stress may enhance VT-1-induced apoptosis through CHOP or play a protective role through ER-phagy, depending on the cell line. Several engineered Stxs are currently under investigation as potential anti-cancer agents. Our results suggest that a better understanding of the signaling pathways induced by Stxs is needed before using them in the clinic.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Linfoma de Burkitt/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Toxina Shiga I/farmacología , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Línea Celular Tumoral , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
13.
Dev Cell ; 6(4): 525-38, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15068792

RESUMEN

Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Red trans-Golgi/metabolismo , Clatrina/antagonistas & inhibidores , Clatrina/metabolismo , Endosomas/ultraestructura , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Transporte de Proteínas/fisiología , Receptor IGF Tipo 2/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga I/farmacología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/metabolismo , Red trans-Golgi/ultraestructura
14.
BMC Cancer ; 9: 67, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19245689

RESUMEN

BACKGROUND: The prerequisite for the potential use of the bacterial toxin verotoxin-1 in the treatment of breast cancer was investigated by first determining the expression of its receptor Gb3 (CD77) in clinical breast cancer tissue specimens. We then examined the cytotoxicity and mechanism of apoptosis induction of Escherichia coli verotoxin-1 (VT-1) in two human breast cancer cell lines. METHODS: Immunohistochemistry for Gb3 expression was performed on cryostat section from 25 breast cancer specimens. The human breast cancer cell lines T47D and MCF-7 were screened for Gb3 expression by flow cytometry. Fluorescein diacetate and LDH release was used to determine cell viability after VT-1 exposure. Apoptosis was studied by measuring caspase activity and DNA-fragmentation. Signal transduction studies were performed on T47D cells with immunoblotting. RESULTS: Gb3 expression was detected in the vascular endothelial cells of all tumours specimens, and in tumour cells in 17 of the specimens. We found no associations between tumour cell Gb3-expression and age, tumour size, TNM-classification, histological type, hormone receptor expression, or survival time. T47D cells strongly expressed Gb3 and were sensitive to the cytotoxicity, caspase activation and DNA fragmentation by VT-1, whereas MCF-7 cells with faint Gb3-expression were insensitive to VT-1. VT-1 (0.01 - 5 microg/L) exposure for 72 h resulted in a small percentage of viable T47D cells whereas the cytotoxicity of cells pre-treated with 2 micromol/L D, L-treo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP, an inhibitor of glucosylceramide synthesis) was eliminated (< or = 0.1 microg/L VT-1) or reduced (0.5 - 5 microg/L VT-1). VT-1 did not cause cellular LDH-release or cell cycle arrest. VT-1 induction of caspase-3 (0.1, 1, and 5 microg/L VT-1), -8, and -9 (1 and 5 microg/L VT-1) activity and DNA fragmentation of T47D cells was blocked by PPMP. Key components of MAP kinase signalling pathways that control mitochondrial function were investigated. VT-1 0.1 - 5 microg/L induced phosphorylation of JNK as well as MKK3/6 suggesting that survival signal pathways were overruled by VT-1-induced JNK activation leading to mitochondrial depolarization, caspase-9 activation and apoptosis. CONCLUSION: The high specificity and apoptosis-inducing properties of verotoxin-1 indicates that the toxin potentially may be used for treatment of Gb3-expressing breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Toxina Shiga I/farmacología , Transducción de Señal/efectos de los fármacos , Trihexosilceramidas/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Persona de Mediana Edad , Trihexosilceramidas/metabolismo
15.
Glycoconj J ; 25(4): 291-304, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18176841

RESUMEN

Shiga toxin (Stx) 1 binds to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer/CD77) and injures human endothelial cells. In order to gain insight into Stx1-induced cellular impairment, we analysed in detail the molecular heterogeneity of Stx1 receptors in two endothelial cell lines differing in their Stx1-sensitivity. We observed a moderate sensitivity to Stx1 of human brain microvascular endothelial cells (HBMECs, CD(50) > 200 ng/ml), but a considerably higher mortality rate in cultures of EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (CD(50) of 0.2 ng/ml). Immunofluorescence microscopy demonstrated the presence of Gb3Cer in both cell lines, but showed an enhanced content of Gb3Cer in EA.hy 926 cells. Solid phase overlay binding assays of isolated GSLs combined with nanoelectrospray ionization quadrupole time-of-flight mass spectrometry demonstrated a balanced proportion of Gb3Cer and globotetraosylceramide (Gb4Cer) in HBMECs, but an increase of Gb3Cer and absence of Gb4Cer in EA.hy 926 cells. Gb3Cer species with C24:1/C24:0 fatty acids were found to dominate over those with C16:0 fatty acids in EA.hy 926 cells, but were similarly distributed in HBMECs. Reverse transcriptase polymerase chain reaction indicated the concomitant presence of Gb3Cer and Gb4Cer synthases in HBMECs, whereas EA.hy 926 cells expressed Gb3Cer synthase, but completely lacked Gb4Cer synthase. This deficiency, resulting in the accumulation of Gb3Cer in EA.hy 926 cells, represents the most prominent molecular reason that underlies the different Stx1 sensitivities of HBMECs and EA.hy 926 endothelial cells.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Glicoesfingolípidos/metabolismo , Receptores de Superficie Celular/metabolismo , Toxina Shiga I/farmacología , Trihexosilceramidas/metabolismo , Encéfalo/citología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía en Capa Delgada , Células Endoteliales/enzimología , Técnica del Anticuerpo Fluorescente , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Inmunohistoquímica , Nanotecnología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Ionización de Electrospray , Trihexosilceramidas/química
16.
Biochim Biophys Acta ; 1762(9): 835-43, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16930953

RESUMEN

Verotoxin (VT)-producing Escherichia coli (E. coli) O157:H7 infections are frequently complicated by thrombotic angiopathy, hemolytic uremic syndrome (HUS) and neurological symptoms. The present data demonstrate that VT-1 (Shiga toxin) stimulation of macrophage-like THP-1 cells up-regulates the activity, antigen and mRNA levels of tissue factor (TF), a key cofactor of the coagulation-inflammation-thrombosis circuit. This up-regulation is accompanied by phosphorylation of phosphatidylinositol 3-kinase (PI3-kinase), IkappaB kinase beta (IKKbeta) and extracellular signal-regulated kinase 2 (ERK2). Changes in TF mRNA levels were in parallel with the activation of NF-kappaB/Rel and Egr-1 activation, but not with AP-1. Inhibition of PI3-kinase attenuated VT-1-induced phosphorylation of IKKbeta and ERK2, and the up-regulation of TF mRNA levels. VT-1 stimulation rapidly activated c-Yes tyrosine kinase, a member of the Src family. Treatment of the cells with c-Yes antisense oligos attenuated the VT-1-induced phosphorylation of PI3-kinase, IKKbeta and ERK2, activations of NF-kappaB/Rel and Egr-1, and up-regulation of TF mRNA levels. These results suggest that VT-1-induced macrophage stimulation activates c-Yes, which then up-regulates TF expression through activation of the IKKbeta/proteasome/NF-kappaB/Rel and MEK/ERK2/Egr-1 pathways via activation of PI3-kinase. Induction of macrophage TF expression by VT-1 may play an important role in the acceleration of the coagulation-inflammation-thrombosis circuit during infections by VT-producing E. coli.


Asunto(s)
Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , ARN Mensajero/metabolismo , Toxina Shiga I/farmacología , Tromboplastina/metabolismo , Regulación hacia Arriba , Diferenciación Celular , Línea Celular Tumoral , Humanos , Leucemia Monocítica Aguda , Macrófagos/efectos de los fármacos , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Curr Biol ; 11(9): 697-701, 2001 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11369233

RESUMEN

The success of proteomics hinges in part on the development of approaches able to map receptors on the surface of cells. One strategy to probe a cell surface for the presence of internalized markers is to make use of Shiga-like toxin 1 (SLT-1), a ribosome-inactivating protein that kills eukaryotic cells [1, 2]. SLT-1 binds to the glycolipid globotriaosylceramide [3, 4], which acts as a shuttle, allowing the toxin to be imported and routed near ribosomes. We investigated the use of SLT-1 as a structural template to create combinatorial libraries of toxin variants with altered receptor specificity. Since all SLT-1 variants retain their toxic function, this property served as a search engine enabling us to identify mutants from these libraries able to kill target cells expressing internalizable receptors. Random mutations were introduced in two discontinuous loop regions of the SLT-1 receptor binding subunit. Minimal searches from screening 600 bacterial colonies randomly picked from an SLT-1 library identified toxin mutants able to kill cell lines resistant to the wild-type toxin. One such mutant toxin was shown to bind to a new receptor on these cell lines by flow cytometry. Toxin libraries provide a strategy to delineate the spectrum of receptors on eukaryotic cells.


Asunto(s)
Técnicas Químicas Combinatorias , Toxina Shiga I/química , Secuencia de Aminoácidos , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Células Eucariotas , Citometría de Flujo , Humanos , Modelos Moleculares , Sondas Moleculares , Toxina Shiga I/farmacología , Células Tumorales Cultivadas , Células Vero
18.
Virus Res ; 125(1): 29-41, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17197048

RESUMEN

Shiga toxins are ribosome-inactivating proteins many of which are antiviral. Shiga toxin-producing Escherichia coli (STEC) may be pathogenic to humans, but are carried without ill effects by ruminants. We hypothesize that STEC have antiviral activity in ruminants, and showed previously that the non-toxic subunit A of Shiga toxin 1 (StxA1) acts selectively on cells infected with bovine leukemia virus, without harming normal cells, and that the numbers of intestinal STEC are inversely correlated with viral load in bovine leukemia virus-infected sheep. The purpose of the present study was to characterize StxA1 activity against a second bovine retrovirus, bovine immunodeficiency virus (BIV). Flow cytometry showed that StxA1 treatment induced apoptosis in BIV-infected cells but not in uninfected cells and immunoblot analysis showed that StxA1 curtailed synthesis of Gag p26 protein. A systematic electron microscopy description of BIV infection in fetal bovine lung fibroblasts showed an orderly sequence of changes in cell membrane, endoplasmic reticulum, Golgi, nucleus, and mitochondria, and suggested that the infected cells produce the virus within multivesicular bodies (MVBs). StxA1 interfered with all manifestations of BIV-induced transformation of infected cells into BIV-producing units. BIV-infected cells provided a suitable experimental system for investigation of the mechanism of Stx-antiviral activity.


Asunto(s)
Antivirales/farmacología , Virus de la Inmunodeficiencia Bovina/efectos de los fármacos , Toxina Shiga I/farmacología , Replicación Viral/efectos de los fármacos , Animales , Células Cultivadas , Virus de la Inmunodeficiencia Bovina/fisiología , Toxina Shiga I/química
19.
Virus Res ; 125(1): 104-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17197049

RESUMEN

The non-toxic enzymic A subunit of Shiga toxin 1 (StxA1) reduces expression and replication of the bovine retroviruses, bovine leukemia virus and bovine immunodeficiency virus (BIV). Here, the impact of StxA1 on representative positive and negative stranded RNA viruses was compared. BIV and equine infectious anemia virus were sensitive to picomolar concentrations of StxA1 while poliovirus, rhinovirus, and vesicular stomatitis virus were only marginally sensitive to nanomolar concentrations of toxin. Thus, the length of the reproductive cycle and/or other factors, but not viral encapsulation may play a role in determining sensitivity to StxA1. The effects of StxA1 at concentrations from 0.01 to 10 microg/ml on the most sensitive virus (BIV-infected cultures of fetal bovine lung cells) were analyzed by electron microscopy 48 h post challenge. Cells treated with 0.1 microg StxA1/ml or higher toxin concentrations were similar in appearance and showed progressively fewer viral factories with increasing toxin concentration. However, cells treated with 0.01 microg/ml StxA1 had a radically different appearance, exhibiting smooth cell membranes and high vacuolization. These results showed that complex retroviruses were more sensitive to StxA1 than single-stranded RNA viruses and that StxA1 interfered with retroviral replication in a concentration-dependent manner.


Asunto(s)
Antivirales/farmacología , Toxina Shiga I/farmacología , Replicación Viral/efectos de los fármacos , Virus de la Inmunodeficiencia Bovina/efectos de los fármacos , Virus de la Inmunodeficiencia Bovina/fisiología , Pruebas de Sensibilidad Microbiana , Toxina Shiga I/química , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/fisiología
20.
J Leukoc Biol ; 79(2): 397-407, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16301326

RESUMEN

Upon binding to the glycolipid receptor globotriaosylceramide, Shiga toxins (Stxs) undergo retrograde transport to reach ribosomes, cleave 28S rRNA, and inhibit protein synthesis. Stxs induce the ribotoxic stress response and cytokine and chemokine expression in some cell types. Signaling mechanisms necessary for cytokine expression in the face of toxin-mediated protein synthesis inhibition are not well characterized. Stxs may regulate cytokine expression via multiple mechanisms involving increased gene transcription, mRNA transcript stabilization, and/or increased translation initiation efficiency. We show that treatment of differentiated THP-1 cells with purified Stx1 resulted in prolonged activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) cascades, and lipopolysaccharides (LPS) rapidly triggered transient activation of JNK and p38 and prolonged activation of extracellular signal-regulated kinase cascades. Simultaneous treatment with Stx1 + LPS mediated prolonged p38 MAPK activation. Stx1 increased eukaryotic translation initiation factor 4E (eIF4E) activation by 4.3-fold within 4-6 h, and LPS or Stx1 + LPS treatment increased eIF4E activation by 7.8- and 11-fold, respectively, within 1 h. eIF4E activation required Stx1 enzymatic activity and was mediated by anisomycin, another ribotoxic stress inducer. A combination of MAPK inhibitors or a MAPK-interacting kinase 1 (Mnk1)-specific inhibitor blocked eIF4E activation by all stimulants. Mnk1 inhibition blocked the transient increase in total protein synthesis detected in Stx1-treated cells but failed to block long-term protein synthesis inhibition. The MAPK inhibitors or Mnk1 inhibitor blocked soluble interleukin (IL)-1beta and IL-8 production or release by 73-96%. These data suggest that Stxs may regulate cytokine expression in part through activation of MAPK cascades, activation of Mnk1, and phosphorylation of eIF4E.


Asunto(s)
Citocinas/biosíntesis , Factor 4E Eucariótico de Iniciación/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/inmunología , Proteínas Quinasas Activadas por Mitógenos/inmunología , Toxina Shiga I/farmacología , Compuestos de Anilina/farmacología , Anisomicina/farmacología , Antracenos/farmacología , Línea Celular Tumoral , Citocinas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Factor 4E Eucariótico de Iniciación/efectos de los fármacos , Flavonoides/farmacología , Humanos , Imidazoles/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fosforilación , Purinas/farmacología , Piridinas/farmacología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/inmunología , Toxina Shiga I/antagonistas & inhibidores , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA