Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429983

RESUMEN

The insecticidal crystal proteins produced by Bacillus thuringiensis during sporulation are active ingredients against lepidopteran, dipteran, and coleopteran insects. Several methods have been reported for their quantification, such as crystal counting, ELISA, and SDS-PAGE/densitometry. One of the major tasks in industrial processes is the analysis of raw material dependency and costs. Thus, the crystal protein quantification method is expected to be compatible with the presence of complex and inexpensive culture medium components. This work presents a revalidated elution-based method for the quantification of insecticidal crystal proteins produced by the native strain B. thuringiensis RT. To quantify proteins, a calibration curve was generated by varying the amount of BSA loaded into SDS-PAGE gels. First, SDS-PAGE was performed for quality control of the bioinsecticide. Then, the stained protein band was excised from 10% polyacrylamide gel and the protein-associated dye was eluted with an alcoholic solution of SDS (3% SDS in 50% isopropanol) during 45 min at 95°C. This protocol was a sensitive procedure to quantify proteins in the range of 2.0-10.0 µg. As proof of concept, proteins of samples obtained from a complex fermented broth were separated by SDS-PAGE. Then, Cry1 and Cry2 proteins were properly quantified.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Insecticidas/análisis , Endotoxinas/análisis , Endotoxinas/química , Residuos/análisis , Toxinas de Bacillus thuringiensis/análisis , Proteínas Bacterianas/química , Proteínas Hemolisinas , Electroforesis en Gel de Poliacrilamida
2.
World J Microbiol Biotechnol ; 36(9): 128, 2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32712871

RESUMEN

Bacillus thuringiensis (Bt) is one of the most promising biological control agents used commercially. Its products can contribute to reducing ecological and environmental problems associated with the use of chemical pesticides. Among the limiting factors of using Bt as bioinsecticide are the costs and ensuring its biological activity, which may vary according to the strain and culture conditions. This systematic review aimed to collect state-of-the-art information on the production of Bt endotoxins and to score the methodological feasibility of the data obtained, thus highlighting possible incoherencies. In order to consolidate recent findings and guide future studies, a total of 47 original articles from the last 10 years was analysed, with special attention being given to corroborating data, identifying inconsistencies and suggesting future adjustments so as to increase data reliability. With a maximum score of 8 points, three production parameters were classified on the following scale: preferable (score: 2), adequate (score: 1) and inadequate (score: 0), and another two parameter were classified as adequate (score: 1) or inadequate (score: 0). No article scored more than 6 out of the maximum of 8, thus reflecting the need for more detailed studies regarding Bt endotoxin production. The lack of standardization of methods and units of measurement also have made a comparison of results and an overall analysis difficult. Standards are suggested in the present study. The inclusion of bioassays and quantifying toxin via alkaline dilution are strongly recommended for studies of this nature, along with LC50 expressed in mg/L. Sixteen articles (34%) did not use either of these suggested methods, which indicates the need for further supporting studies. These findings reinforce the need for robust studies in this area, which could include the development of more affordable and effective bioinsecticides, thus increasing their competitiveness against insecticides derived from unsustainable sources.


Asunto(s)
Toxinas de Bacillus thuringiensis/biosíntesis , Bacillus thuringiensis/metabolismo , Endotoxinas/biosíntesis , Animales , Toxinas de Bacillus thuringiensis/análisis , Bioensayo , Agentes de Control Biológico , Bases de Datos Factuales , Endotoxinas/análisis , Insecticidas/farmacología , Larva/efectos de los fármacos , Control Biológico de Vectores
3.
Ying Yong Sheng Tai Xue Bao ; 33(1): 119-125, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35224933

RESUMEN

Cry protein residue and accumulation in soil are two important components of the environmental safety assessment for the plantation of transgenic Bt crops. Several Bt rice lines with good commercial prospects have been developed in China, but it is unclear whether Cry proteins will accumulate in soils after multiple years of Bt rice cultivation. We planted the transgenic Bt rice lines cry1Ab/1Ac Minghui 63 (Huahui No. 1) and cry2A Minghui 63 for 9 years in the same field. The Cry proteins in the rhizosphere soil were estimated with enzyme linked immunosorbent assay (ELISA) at tillering stage and on the 60th day after harvest in each year. The Cry protein residues during the seedling, flowering and ripening stages were estimated in the first year (2012) and the last year (2020) of the experiment. In 2012, the concentration of Cry1Ab/1Ac in the rhizosphere soil of Huahui No. 1 was 1.25, 1.77, 1.97, 1.71 and 0.30 ng·g-1 at the seedling, tillering, flowering, ripening stages and on the 60th day after harvest, respectively. In 2020, the corresponding values were 1.30, 1.69, 2.03, 1.77, and 0.43 ng·g-1. In 2012, the concentration of Cry2A in rhizosphere soil of line cry2A Minghui 63 was 0.91, 1.52, 1.53, 1.37, and 0.12 ng·g-1 at the seedling, tillering, flowering, ripening stages and on the 60th day after harvest, respectively. The corresponding values in 2020 were 0.95, 1.43, 1.61, 1.40, and 0.15 ng·g-1. Results of multi-way ANOVA showed that the effect of year was not significant, but the effects of rice variety and growth stage were significant. Our results indicated that Cry proteins could be detected in rhizosphere soil during the growth stages of Bt rice, but would be degraded by 60 d after harvest, and that the concentrations of Cry proteins in the soil would not accumulate across multiple planting years.


Asunto(s)
Toxinas de Bacillus thuringiensis/análisis , Endotoxinas/análisis , Proteínas Hemolisinas/análisis , Oryza , Suelo/química , Oryza/genética , Plantas Modificadas Genéticamente , Rizosfera
4.
Arq. Inst. Biol. (Online) ; 77(4): 685-692, out.-dez. 2010. ilus, tab
Artículo en Portugués | VETINDEX, LILACS | ID: biblio-1395477

RESUMEN

Trichoplusia ni é uma praga polífaga importante em plantios de crucíferas, soja e algodão. O presente estudo objetivou selecionar e caracterizar por método molecular isolados de Bacillus thuringiensis (Bt) com potencial para atuar com agentes de controle biológico de T. ni. Para os bioensaios de patogenicidade, uma alíquota com 3 x 108 esporos/mL de suspensão de Bt de cada isolado foi aplicada na superfície do disco de dieta artificial, previamente distribuída em placas de acrílico com 50 lagartas, distribuídas em 5 repetições. Nos bioensaios para a obtenção da CL50, apenas os isolados com 100% de mortalidade foram pré-selecionados, sendo testadas as seguintes concentrações: 102, 5 x 102, 103, 2 x 103, 4 x 103, 6 x 103, 8 x 103 esporos/mL, sendo os tratamentos compostos por 120 lagartas, distribuídas em 3 repetições. Foi feita caracterização molecular para detectar os genes cry1, cry2 e Vip para os isolados que obtiveram mortalidade acima de 95%. Os isolados HD-1 (Padrão), Bt-1043N-V, Bt-1034F, Bt-1009K, Bt-1000, Bt-969A causaram 100% de mortalidade nos testes de patogenicidade e CL50 de 1,17 x 103, 1,45 x 103, 1,46 x 103, 1,01 x 103, 9,43 x 102, 1,22 x 103, respectivamente. Não foram encontrados genes cry1, cry2 e Vip nos isolados testados, podendo outras toxinas Cry estar causando a mortalidade de T. ni, visto que os isolados testados são específicos para a ordem Lepidoptera. Estes isolados mostraram potencial para o controle de T. ni, sendo virulentos a este inseto, com potencial para serem utilizados em programa de manejo desta praga.


Trichoplusia ni is a polyphagous pest that is becoming a major pest in plantations of cruciferous crops, soybeans and cotton. This study was aimed to select and molecularly characterize efficient isolates of Bacillus thuringiensis (Bt) for the control of T. ni. For the bioassays of pathogenicity, an aliquot with a 3 x 108 spores/mL suspension of Bt of each isolate was applied on the surface of the artificial diet disk, previously distributed on acrylic plates with 50 larvae, distributed in 5 repetitions. In bioassays to obtain the LC50, only isolates with 100% mortality were preselected, and tests were carried out at the concentrations 102, 5 x 102, 103, 2 x 103, 4 x 103, 6 x 103, and 8 x 103 spores/mL, and the treatments consisting of 120 larvae, distributed in 3 repetitions. A molecular characterization was performed to detect the genes cry1, cry2 and Vip for the isolates which obtained mortality over 95%. Isolates HD-1 (Standard), Bt-1043N-V, Bt-1034F, Bt-1009K, Bt-1000 and Bt-969A caused 100% mortality in the test for pathogenicity and presented an LC50 of 1.17 x 103, 1.45 x 103, 1, 46 x 103, 1.01 x 103, 9.43 x 102, 1.22 x 103, respectively. Genes cry1, cry2 and Vip were not found in the isolates tested, and other Cry toxins may have been causing the mortality of T. ni, since the isolates tested are specific for the Lepidoptera order. These isolates showed potential for the control of T. ni, being aggressive to this insect, with a potential to be used in a pest management program for this species.


Asunto(s)
Bacillus thuringiensis/ultraestructura , Control Biológico de Vectores , Toxinas de Bacillus thuringiensis/análisis , Lepidópteros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA