Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.667
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042488

RESUMEN

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Asunto(s)
Elastasa de Leucocito , Transcortina , Glicosilación , Hidrocortisona/metabolismo , Elastasa de Leucocito/metabolismo , Polisacáridos , Proteolisis , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
2.
Proc Biol Sci ; 288(1964): 20211908, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34847769

RESUMEN

Predation is a key organizing force in ecosystems. The threat of predation may act to programme the endocrine hypothalamic-pituitary-adrenal axis during development to prepare offspring for the environment they are likely to encounter. Such effects are typically investigated through the measurement of corticosteroids (Cort). Corticosteroid-binding globulin (CBG) plays a key role in regulating the bioavailability of Cort, with only free unbound Cort being biologically active. We investigated the effects of prenatal predator odour exposure (POE) in mice on offspring CBG and its impact on Cort dynamics before, during and after restraint stress in adulthood. POE males, but not females, had significantly higher serum CBG at baseline and during restraint and lower circulating levels of Free Cort. Restraint stress was associated with reduced liver transcript abundance of SerpinA6 (CBG-encoding gene) only in control males. POE did not affect SerpinA6 promoter DNA methylation. Our results indicate that prenatal exposure to a natural stressor led to increased CBG levels, decreased per cent of Free Cort relative to total and inhibited restraint stress-induced downregulation of CBG transcription. These changes suggest an adaptive response to a high predator risk environment in males but not females that could buffer male offspring from chronic Cort exposure.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Transcortina , Animales , Femenino , Masculino , Ratones , Embarazo , Corticosterona , Ecosistema , Sistema Hipotálamo-Hipofisario/metabolismo , Odorantes , Sistema Hipófiso-Suprarrenal/metabolismo , Transcortina/metabolismo
3.
J Hum Genet ; 66(6): 625-636, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33469137

RESUMEN

The stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from ~2.2 M to ~7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and α1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06-0.59) and myocardial infarction (0.21, 95% CI 0.00-0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the aetiology of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Infarto del Miocardio/genética , Transcortina/genética , alfa 1-Antitripsina/genética , Corticoesteroides/sangre , Adulto , Bancos de Muestras Biológicas , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/patología , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/patología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Reino Unido
4.
Horm Metab Res ; 53(8): 520-528, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34384109

RESUMEN

Clomiphene citrate (CC) in male hypogonadism increases testosterone (T) and estrogen levels by stimulating pituitary gonadotropin release. Our group confirmed these hormonal changes in a randomized, cross-over, double-blind trial of CC versus placebo in addition to metformin, conducted in 21 obese dysmetabolic men with low T levels. However, we hypothesize that based on its mechanism of action, CC may directly or indirectly affect adrenal steroidogenesis. The aim of this sub-study was to better understand the changes in steroid levels and metabolism induced by CC treatment. We assessed 17α-hydroxypregnelone (17αOH-P5), dehydroepiandrosterone (DHEA), progesterone (P4), 17α-hydroxyprogesterone (17αOH-P4), androstenedione (A), T, dihydrotestosterone (DHT), estrone (E1), 17ß-estradiol (E2), 11-deoxycortisol (11 S), cortisol (F), and cortisone (E) by LC-MS/MS, and corticosteroid binding globulin (CBG) by ELISA, before and after each treatment. In addition, free-F and steroid product/precursor ratios were calculated. We observed a significant change in serum levels induced by CC compared with placebo for 17αOH-P4, DHT, T, E2, E1, F, E, and CBG, but not free-F. In addition, compared to placebo, CC induced higher 17αOH-P4/P4, E2/E1, 17αOH-P4/17αOH-P5, A/17αOH-P4, T/A, E1/A, F/11 S, and F/E ratios. Therefore, besides the CC stimulating effect on testis steroidogenesis, our study showed increased F, E, but not free-F, levels, indicating changes in steroid metabolism rather than adrenal secretion stimulation. The steroid profiling also revealed the CC stimulation of the Δ5 rather than the Δ4 pathway, thus indicating considerable testicular involvement in the increased androgen secretion.


Asunto(s)
Clomifeno/farmacología , Esteroides/sangre , Testosterona/sangre , Adulto , Cromatografía Liquida , Estudios Cruzados , Método Doble Ciego , Humanos , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Esteroides/metabolismo , Espectrometría de Masas en Tándem , Transcortina/análisis
5.
Gen Comp Endocrinol ; 310: 113810, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964285

RESUMEN

Glucocorticoid hormones are often measured to assess how organisms physiologically respond to challenges in their environment. In plasma, glucocorticoids circulate in two forms: bound to corticosteroid-binding globulins (CBG) or unbound (free). Measuring CBG allows us to estimate the amount of free glucocorticoids present in a plasma sample. However, free glucocorticoid estimates are affected by the assay temperature used when measuring CBG, with colder temperatures maximizing specific binding but likely underestimating glucocorticoid's affinity for CBG. Here, we test how a biologically relevant incubation temperature (41 °C) changes the disassociation constant (Kd; used to estimate free glucocorticoid levels) when compared to the traditional 4 °C incubation temperature, across four commonly studied avian species. We then apply the new Kd's calculated at 41 °C to existing data sets to examine how the change in Kd affects free corticosterone estimates and data interpretation. Kd's were generally higher (lower affinity for CORT) at warmer incubation temperatures which resulted in higher levels of estimated free CORT in all four species but differed among subspecies. This increase in free CORT levels did not qualitatively change previously reported statistical relationships, but did affect variance and alpha (P) values. We suggest that future assays be run at biologically relevant temperatures for more accurate estimates of free CORT levels in vivo and to increase the chances of detecting biological patterns of free-CORT that may not be revealed with the classic methodology that tends to underestimate free CORT levels.


Asunto(s)
Corticosterona , Transcortina , Animales , Aves/metabolismo , Temperatura , Transcortina/metabolismo
6.
J Transl Med ; 18(1): 8, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907043

RESUMEN

BACKGROUND: Serum protein glycosylation is an area of investigation in inflammatory arthritic disorders such as rheumatoid arthritis (RA). Indeed, some studies highlighted abnormalities of protein glycosylation in RA. Considering the numerous types of enzymes, monosaccharides and glycosidic linkages, glycosylation is one of the most complex post translational modifications. By this work, we started with a preliminary screening of glycoproteins in serum from RA patients and controls. METHODS: In order to isolate glycoproteins from serum, lectin wheat germ agglutinin was used and quantitative differences between patients and controls were investigated by LC-MS/MS. Consequently, we focused our attention on two glycoproteins found in this explorative phase: corticosteroid-binding globulin (CBG) and lipopolysaccharide-binding protein (LBP). The subsequent validation with immunoassays was widened to a larger number of early RA (ERA) patients (n = 90) and well-matched healthy controls (n = 90). RESULTS: We observed a significant reduction of CBG and LBP glycosylation in ERA patients compared with healthy controls. Further, after 12 months of treatment, glycosylated CBG and LBP levels increased both to values comparable to those of controls. In addition, these changes were correlated with clinical parameters. CONCLUSIONS: This study enables to observe that glycosylation changes of CBG and LBP are related to RA disease activity and its response to treatment.


Asunto(s)
Artritis Reumatoide , Transcortina , Proteínas de Fase Aguda , Artritis Reumatoide/tratamiento farmacológico , Proteínas Portadoras , Cromatografía Liquida , Glicosilación , Humanos , Glicoproteínas de Membrana , Espectrometría de Masas en Tándem , Transcortina/metabolismo
7.
J Struct Biol ; 207(2): 169-182, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103428

RESUMEN

The introduction of ligand-binding sites into proteins and the engineering of molecular allosteric coupling pathways are topical issues in protein design. Here, we show that these issues can be addressed concurrently, using the serpin human α1-antichymotrypsin (ACT) as a model. We have introduced up to 15 amino acid substitutions into ACT, converting it into a surrogate corticosteroid-binding globulin (CBG), thereby creating a new binding globulin (NewBG). Human CBG and ACT share 46% sequence identity, and CBG served as the blue-print for our design, which was guided by side-chain-packing calculations, ITC measurements and crystal structure determinations. Upon transfer of ligand-interacting residues from CBG to ACT and mutation of specific second shell residues, a NewBG variant was obtained, which binds cortisol with 1.5 µM affinity. This novel serpin (NewBG-III) binds cortisol with a 33-fold lower affinity than CBG, but shares a similar ligand-binding profile and binding mode when probed with different steroid ligands and site-directed mutagenesis. An additional substitution, i.e. A349R, created NewBG-III-allo, which introduced an allosteric coupling between ligand binding and the serpin-like S-to-R transition in ACT. In NewBG-III-allo, the proteinase-triggered S-to-R transition leads to a greater than 200-fold reduction in ligand affinity, and crystal structures suggest that this is mediated by the L55V and A349R substitutions. This reduction significantly exceeds the 10-fold reduction in binding affinity observed in human CBG.


Asunto(s)
Complejos Multiproteicos/química , Ingeniería de Proteínas , Transcortina/química , alfa 1-Antiquimotripsina/química , Sustitución de Aminoácidos/genética , Sitios de Unión/genética , Cristalografía por Rayos X , Humanos , Hidrocortisona/química , Ligandos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Mutación/genética , Unión Proteica/genética , Conformación Proteica , Homología de Secuencia de Aminoácido , Transcortina/genética , Transcortina/ultraestructura , alfa 1-Antiquimotripsina/genética , alfa 1-Antiquimotripsina/ultraestructura
8.
Clin Endocrinol (Oxf) ; 90(1): 232-240, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160799

RESUMEN

CONTEXT: Corticosteroid-binding globulin (CBG) and albumin transport circulating cortisol. Cleavage of high-affinity CBG (haCBG) by neutrophil elastase at inflammatory sites causes cortisol release into tissues, facilitating immunomodulatory effects. OBJECTIVE: To determine whether depletion of haCBG is related to mortality in septic shock. DESIGN: A single-center prospective observational cohort study of patients recruited with critical illness or septic shock, using serum samples collected at 0, 8, 24, 48 and 72 hours. Serum total and haCBG, and total and free cortisol were assayed directly. Glucocorticoid treatment was an exclusion criterion. Mortality was assessed at 28 days from Intensive Care Unit admission. RESULTS: Thirty septic shock (SS) and 42 nonseptic critical illness (CI) patients provided 195 serum samples. SS/CI patients had lower total CBG, haCBG and low-affinity CBG (laCBG) than controls. Total CBG and haCBG were significantly lower in septic shock patients who died than in those that survived (P < 0.009, P = 0.021, respectively). Total and free cortisol were higher in septic than nonseptic individuals. Free/total cortisol fractions were higher in those with low haCBG as observed in septic shock. However, cortisol levels were not associated with mortality. Albumin levels fell in sepsis but were not related to mortality. CONCLUSIONS: Low circulating haCBG concentrations are associated with mortality in septic shock. These results are consistent with an important physiological role for haCBG in cortisol tissue delivery in septic shock.


Asunto(s)
Choque Séptico/sangre , Choque Séptico/mortalidad , Transcortina/deficiencia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Enfermedad Crítica , Femenino , Humanos , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Albúmina Sérica Humana/análisis , Choque Séptico/complicaciones , Transcortina/análisis , Adulto Joven
9.
Clin Endocrinol (Oxf) ; 91(1): 33-40, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30868607

RESUMEN

CONTEXT: Optimization of hydrocortisone replacement therapy is important to prevent under- and over dosing. Hydrocortisone pharmacokinetics is complex as circulating cortisol is protein bound mainly to corticosteroid-binding globulin (CBG) that has a circadian rhythm. OBJECTIVE: A detailed analysis of the CBG circadian rhythm and its impact on cortisol exposure after hydrocortisone administration. DESIGN AND METHODS: CBG was measured over 24 hours in 14 healthy individuals and, employing a modelling and simulation approach using a semi-mechanistic hydrocortisone pharmacokinetic model, we evaluated the impact on cortisol exposure (area under concentration-time curve and maximum concentration of total cortisol) of hydrocortisone administration at different clock times and of the changing CBG concentrations. RESULTS: The circadian rhythm of CBG was well described with two cosine terms added to the baseline of CBG: baseline CBG was 21.8 µg/mL and interindividual variability 11.9%; the amplitude for the 24 and 12 hours cosine functions were relatively small (24 hours: 5.53%, 12 hours: 2.87%) and highest and lowest CBG were measured at 18:00 and 02:00, respectively. In simulations, the lowest cortisol exposure was observed after administration of hydrocortisone at 23:00-02:00, whereas the highest was observed at 15:00-18:00. The differences between the highest and lowest exposure were minor (≤12.2%), also regarding the free cortisol concentration and free fraction (≤11.7%). CONCLUSIONS: Corticosteroid-binding globulin has a circadian rhythm but the difference in cortisol exposure is ≤12.2% between times of highest and lowest CBG concentrations; therefore, hydrocortisone dose adjustment based on time of dosing to adjust for the CBG concentrations is unlikely to be of clinical benefit.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Hidrocortisona/farmacología , Hidrocortisona/farmacocinética , Transcortina/metabolismo , Adolescente , Adulto , Ritmo Circadiano/fisiología , Femenino , Voluntarios Sanos , Humanos , Hidrocortisona/sangre , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Neuroendocrinology ; 109(4): 322-332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30904918

RESUMEN

BACKGROUND/AIMS: Glucocorticoids are essential in modulating memory processes of emotionally arousing experiences and we have shown that corticosteroid-binding globulin (CBG) influences glucocorticoid delivery to the brain. Here, we investigated the role of CBG in contextual and recognition long-term memory according to stress intensity. METHOD: We used adult male mice totally deficient in CBG (Cbg KO) or brain-specific Cbg KO (CbgCamk KO) to examine their performance in contextual fear conditioning (CFC) and au-ditory fear conditioning, both at short (1 h) and long-term (24 h). Long-term memory in Cbg KO was further analyzed in conditioned odor aversion and in novel object recognition task (NORT) with different paradigms, that is, with and without prior habituation to the context, with a mild or strong stressor applied during consolidation. In the NORT experiments, total and free glucocorticoid levels were measured during consolidation. RESULTS: Impaired memory was observed in the Cbg KO but not in the CbgCamk KO in the CFC and the NORT without habituation when tested 24 h later. However, Cbg KO displayed normal behavior in the NORT with previous habituation and in the NORT with a mild stressor. In condition of the NORT with a strong stressor, Cbg KO retained good 24 h memory performance while controls were impaired. Total and free glucocorticoids levels were always higher in controls than in Cbg KO except in NORT with mild stressor where free glucocorticoids were equivalent to controls. CONCLUSIONS: These data indicate that circulating but not brain CBG influences contextual and recognition long-term memory in relation with glucocorticoid levels.


Asunto(s)
Fatiga/psicología , Enfermedades Genéticas Congénitas/psicología , Consolidación de la Memoria , Reconocimiento en Psicología/fisiología , Transcortina/deficiencia , Estimulación Acústica , Animales , Miedo , Glucocorticoides/metabolismo , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Memoria a Largo Plazo , Ratones , Ratones Noqueados , Odorantes , Estrés Psicológico/psicología
11.
Physiol Genomics ; 50(10): 876-883, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30029587

RESUMEN

Increasing evidence suggests that there are innate differences between sexes with respect to stroke pathophysiology; however, the molecular mechanisms underlying these differences remain unclear. In this investigation, we employed a shotgun approach to broadly profile sex-associated differences in the plasma proteomes of a small group of male ( n = 6) and female ( n = 4) ischemic stroke patients. Peripheral blood was sampled during the acute phase of care, and liquid chromatography electrospray ionization mass spectrometry was used to quantify plasma proteins. We observed widespread differences in plasma composition, as 77 out of 294 detected proteins were significantly differentially expressed between sexes. Corticosteroid-binding globulin (CBG), a negative acute-phase reactant that inversely regulates levels of bioactive free cortisol, was the most dramatically differentially regulated, exhibiting 16-fold higher abundance in plasma from women relative to men. Furthermore, functional annotation analysis revealed that the remaining differentially expressed proteins were significantly enriched for those involved in response to corticosteroid signaling. Plasma CBG levels were further examined in an additional group of male ( n = 19) and female ( n = 28) ischemic stroke patients, as well as a group of male ( n = 13) and female ( n = 18) neurologically normal controls. CBG levels were significantly reduced in male stroke patients relative to male controls; however, no differences were observed between female stroke patients and female controls, suggesting that women may exhibit an attenuated cortisol response to stroke. Collectively, our findings reinforce the idea that there are sex-associated differences in stroke pathophysiology and suggest that cortisol signaling should be investigated further as a potential molecular mediator.


Asunto(s)
Corticoesteroides/metabolismo , Isquemia Encefálica/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Accidente Cerebrovascular/metabolismo , Corticoesteroides/sangre , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/complicaciones , Estudios de Cohortes , Femenino , Humanos , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Masculino , Factores Sexuales , Transducción de Señal , Accidente Cerebrovascular/etiología , Transcortina/metabolismo
12.
Biol Reprod ; 98(5): 722-738, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408990

RESUMEN

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Polirribosomas/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Barrera Hematotesticular , Expresión Génica , Células Intersticiales del Testículo/citología , Masculino , Ratones , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Testículo/citología , Transcortina/genética , Transcortina/metabolismo
15.
Gen Comp Endocrinol ; 259: 122-130, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155262

RESUMEN

Pregnancy is one of the defining characteristics of placental mammals. Key in the growth and development of the fetus during pregnancy are the dynamics of glucocorticoids (GCs) and their binding protein,corticosteroid-binding globulin (CBG), which determines how much of the GCs are free and biologically active. Out of more than 5000 species of placental mammals in 19 different orders, our understanding of the dynamics of maternal GCs and CBG during pregnancy is largely limited to the detailed study of 3 groups - sheep, laboratory rodents, and humans. The assumption is often made that what we see in these few species applies to the rest. To examine this generality, we compared patterns of maternal GCs over pregnancy from all placental mammals where data is available: in the blood of 13 species from 5 different orders and in metabolites in excreta in an additional 20 species from 9 orders. We found that maternal free GCs increase by late pregnancy in most taxa. This increase is achieved by either an increase in total GC secretion or a decrease in CBG. A major exception is found in the even-toed ungulates (sheep, cows, etc.) where maternal GCs and CBG remain stable, but where the fetal adrenals mature in late pregnancy and produce the majority of their own GCs. We conclude that patterns of change in maternal GCs and CBG during pregnancy are species-specific but are alternative means to the same end: increased fetal exposure to GCs in late pregnancy, which is essential for development.


Asunto(s)
Glucocorticoides/uso terapéutico , Mamíferos/crecimiento & desarrollo , Transcortina/uso terapéutico , Animales , Femenino , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Embarazo , Ovinos , Transcortina/farmacología
16.
Gen Comp Endocrinol ; 266: 78-86, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29763585

RESUMEN

Southern flying squirrels have higher circulating cortisol levels than most vertebrates. However, regulation of tissue exposure to cortisol by the hormone's carrier protein, corticosteroid-binding globulin (CBG), appears to be altered due to lower-than-expected CBG expression levels, and a reduced affinity for cortisol. To assess the capacity of flying squirrels to regulate acute stress-mediated cortisol levels, we used the dexamethasone (DEX) suppression test followed by the adrenocorticotropic hormone (ACTH) stimulation test in both the breeding and non-breeding seasons, and quantified resultant changes in plasma cortisol and relative CBG levels. Regulation of cortisol via negative feedback, and the acute stress response appeared to function as they do in other vertebrates during the breeding season, but response to DEX in the non-breeding season showed that the sensitivity of the negative feedback mechanism changed across seasons. The relatively high concentrations of DEX required to induce negative feedback suggests that southern flying squirrels have a reduced sensitivity to cortisol compared with other vertebrates, and that high circulating cortisol levels may be required to compensate for low target tissue responsiveness in this species. Cortisol, but not CBG levels, were higher during the non-breeding than breeding season, and females had higher cortisol and CBG levels than males. Our data suggest that flying squirrel cortisol levels are regulated by negative feedback at a higher set point than in related species. Seasonal changes in cortisol levels, target tissue sensitivity to DEX, and in the capacity to respond to stressors appear to be part of the underlying physiology of southern flying squirrels, and may be required to maximize fitness in the face of tradeoffs between survival and reproduction.


Asunto(s)
Glucocorticoides/sangre , Sciuridae/sangre , Sciuridae/fisiología , Estaciones del Año , Estrés Fisiológico , Hormona Adrenocorticotrópica/farmacología , Animales , Proteínas Portadoras , Dexametasona/farmacología , Femenino , Hidrocortisona/sangre , Masculino , Reproducción , Estrés Fisiológico/efectos de los fármacos , Transcortina/metabolismo
17.
Arch Toxicol ; 92(6): 2013-2025, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29721586

RESUMEN

Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. It is a ubiquitous environmental pollutant and suspected endocrine disruptor. Corticosteroid-binding globulin (CBG) is a monomeric glycoprotein that can bind specifically to anti-inflammatory steroids, such as glucocorticoids and progesterone, in circulation. Our previous proteomic profile analysis revealed that CBG levels increased in testes after PFOA treatment. In the present study, we verified its increase in mouse testes following oral exposure to PFOA (0, 1.25 and 5 mg/kg/day for 28 days) by immunohistochemical analysis and Western blotting. In addition, RNA fluorescence in situ hybridization (FISH) confirmed that testicular CBG was specifically expressed in Leydig cells. Serum CBG levels in all three PFOA groups also increased, accompanied by increased corticosterone in the 5 and 20 mg/kg/day groups and decreased adrenocorticotropic hormone in the 20 mg/kg/day group. Thus, the influence of PFOA on blood CBG may change free steroid hormone concentrations, thereby serving as an endocrine disruptor. A stimulation effect of PFOA on CBG was also observed in vitro using the Leydig tumor mLTC-1 cell line. Overexpression of CBG in mLTC-1 cells increased progesterone release in culture media. In addition, CBG-induced proteins involved in steroidogenesis in mLTC-1 cells, including steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1), 17α-hydroxylase/17,20 lyase (CYP17A1), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD), which may be the mechanism behind increased progesterone. Furthermore, the production and release of CBG in mLTC-1 cells were also induced by luteinizing hormone, though this mechanism requires further exploration.


Asunto(s)
Caprilatos/toxicidad , Disruptores Endocrinos/toxicidad , Fluorocarburos/toxicidad , Células Intersticiales del Testículo/efectos de los fármacos , Progesterona/biosíntesis , Transcortina/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Testículo/efectos de los fármacos , Testículo/metabolismo , Transcortina/genética
18.
J Biol Chem ; 291(21): 11300-12, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27026706

RESUMEN

Corticosteroid-binding globulin (CBG) was isolated from chicken serum and identified by mass spectrometry and genomic analysis. This revealed that the organization and synteny of avian and mammalian SerpinA6 genes are conserved. Recombinant zebra finch CBG steroid-binding properties reflect those of the natural protein in plasma and confirm its identity. Zebra finch and rat CBG crystal structures in complex with cortisol resemble each other, but their primary structures share only ∼40% identity, and their steroid-binding site topographies differ in several unexpected ways. Remarkably, a tryptophan that anchors ligands in mammalian CBG steroid-binding sites is replaced by an asparagine. Phylogenetic comparisons show that reptilian CBG orthologs share this unexpected property. Glycosylation of this asparagine in zebra finch CBG does not influence its steroid-binding affinity, but we present evidence that it may participate in protein folding and steroid-binding site formation. Substitutions of amino acids within zebra finch CBG that are conserved only in birds reveal how they contribute to their distinct steroid-binding properties, including their high (nanomolar) affinities for glucocorticoids, progesterone, and androgens. As in mammals, a protease secreted by Pseudomonas aeruginosa cleaves CBG in zebra finch plasma within its reactive center loop and disrupts steroid binding, suggesting an evolutionarily conserved property of CBGs. Measurements of CBG mRNA in zebra finch tissues indicate that liver is the main site of plasma CBG production, and anti-zebra finch CBG antibodies cross-react with CBGs in other birds, extending opportunities to study how CBG regulates the actions of glucocorticoids and sex steroids in these species.


Asunto(s)
Proteínas Aviares/sangre , Proteínas Aviares/genética , Aves/sangre , Aves/genética , Evolución Molecular , Transcortina/genética , Transcortina/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Pollos/sangre , Pollos/genética , Cristalografía por Rayos X , Pinzones/sangre , Pinzones/genética , Glicosilación , Modelos Moleculares , Filogenia , Ratas , Homología de Secuencia de Aminoácido , Gorriones/sangre , Gorriones/genética , Transcortina/química
19.
J Biol Chem ; 291(34): 17727-42, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27339896

RESUMEN

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues upon elastase-based proteolysis of the exposed reactive center loop (RCL). However, the molecular mechanisms that regulate the RCL proteolysis by co-existing host and bacterial elastases in inflamed/infected tissues remain unknown. We document that RCL-localized Asn(347) glycosylation fine-tunes the RCL cleavage rate by human neutrophil elastase (NE) and Pseudomonas aeruginosa elastase (PAE) by different mechanisms. NE- and PAE-generated fragments of native and exoglycosidase-treated blood-derived CBG of healthy individuals were monitored by gel electrophoresis and LC-MS/MS to determine the cleavage site(s) and Asn(347) glycosylation as a function of digestion time. The site-specific (Val(344)-Thr(345)) and rapid (seconds to minutes) NE-based RCL proteolysis was significantly antagonized by several volume-enhancing Asn(347) glycan features (i.e. occupancy, triantennary GlcNAc branching, and α1,6-fucosylation) and augmented by Asn(347) NeuAc-type sialylation (all p < 0.05). In contrast, the inefficient (minutes to hours) PAE-based RCL cleavage, which occurred equally well at Thr(345)-Leu(346) and Asn(347)-Leu(348), was abolished by the presence of Asn(347) glycosylation but was enhanced by sialoglycans on neighboring CBG N-sites. Molecular dynamics simulations of various Asn(347) glycoforms of uncleaved CBG indicated that multiple Asn(347) glycan features are modulating the RCL digestion efficiencies by NE/PAE. Finally, high concentrations of cortisol showed weak bacteriostatic effects toward virulent P. aeruginosa, which may explain the low RCL potency of the abundantly secreted PAE during host infection. In conclusion, site-specific CBG N-glycosylation regulates the bioavailability of cortisol in inflamed environments by fine-tuning the RCL proteolysis by endogenous and exogenous elastases. This study offers new molecular insight into host- and pathogen-based manipulation of the human immune system.


Asunto(s)
Proteínas Bacterianas/inmunología , Interacciones Huésped-Patógeno/inmunología , Hidrocortisona/inmunología , Elastasa de Leucocito/inmunología , Proteolisis , Pseudomonas aeruginosa/fisiología , Transcortina/inmunología , Asparagina/inmunología , Glicosilación , Humanos
20.
BMC Cancer ; 17(1): 751, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29126409

RESUMEN

BACKGROUND: While cure rates for childhood acute lymphoblastic leukemia (cALL) now exceed 80%, over 60% of survivors will face treatment-related long-term sequelae, including cardiometabolic complications such as obesity, insulin resistance, dyslipidemia and hypertension. Although genetic susceptibility contributes to the development of these problems, there are very few studies that have so far addressed this issue in a cALL survivorship context. METHODS: In this study, we aimed at evaluating the associations between common and rare genetic variants and long-term cardiometabolic complications in survivors of cALL. We examined the cardiometabolic profile and performed whole-exome sequencing in 209 cALL survivors from the PETALE cohort. Variants associated with cardiometabolic outcomes were identified using PLINK (common) or SKAT (common and rare) and a logistic regression was used to evaluate their impact in multivariate models. RESULTS: Our results showed that rare and common variants in the BAD and FCRL3 genes were associated (p<0.05) with an extreme cardiometabolic phenotype (3 or more cardiometabolic risk factors). Common variants in OGFOD3 and APOB as well as rare and common BAD variants were significantly (p<0.05) associated with dyslipidemia. Common BAD and SERPINA6 variants were associated (p<0.05) with obesity and insulin resistance, respectively. CONCLUSIONS: In summary, we identified genetic susceptibility loci as contributing factors to the development of late treatment-related cardiometabolic complications in cALL survivors. These biomarkers could be used as early detection strategies to identify susceptible individuals and implement appropriate measures and follow-up to prevent the development of risk factors in this high-risk population.


Asunto(s)
Biomarcadores de Tumor/genética , Hipertensión/genética , Obesidad/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Supervivientes de Cáncer , Niño , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipertensión/patología , Resistencia a la Insulina/genética , Masculino , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores Inmunológicos/genética , Factores de Riesgo , Transcortina/genética , Secuenciación del Exoma , Proteína Letal Asociada a bcl/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA