Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2401159121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865261

RESUMEN

Trichomonas vaginalis, a common sexually transmitted parasite that colonizes the human urogenital tract, secretes extracellular vesicles (TvEVs) that are taken up by human cells and are speculated to be taken up by parasites as well. While the crosstalk between TvEVs and human cells has led to insight into host:parasite interactions, roles for TvEVs in infection have largely been one-sided, with little known about the effect of TvEV uptake by T. vaginalis. Approximately 11% of infections are found to be coinfections of multiple T. vaginalis strains. Clinical isolates often differ in their adherence to and cytolysis of host cells, underscoring the importance of understanding the effects of TvEV uptake within the parasite population. To address this question, our lab tested the ability of a less adherent strain of T. vaginalis, G3, to take up fluorescently labeled TvEVs derived from both itself (G3-EVs) and TvEVs from a more adherent strain of the parasite (B7RC2-EVs). Here, we showed that TvEVs generated from the more adherent strain are internalized more efficiently compared to the less adherent strain. Additionally, preincubation of G3 parasites with B7RC2-EVs increases parasite aggregation and adherence to host cells. Transcriptomics revealed that TvEVs up-regulate expression of predicted parasite membrane proteins and identified an adherence factor, heteropolysaccharide binding protein (HPB2). Finally, using comparative proteomics and superresolution microscopy, we demonstrated direct transfer of an adherence factor, cadherin-like protein, from TvEVs to the recipient parasite's surface. This work identifies TvEVs as a mediator of parasite:parasite communication that may impact pathogenesis during mixed infections.


Asunto(s)
Vesículas Extracelulares , Trichomonas vaginalis , Vesículas Extracelulares/metabolismo , Trichomonas vaginalis/metabolismo , Trichomonas vaginalis/genética , Humanos , Interacciones Huésped-Parásitos , Regulación hacia Arriba , Adhesión Celular , Femenino , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
2.
J Cell Sci ; 137(13)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38884339

RESUMEN

Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.


Asunto(s)
Endosomas , Endosomas/metabolismo , Transporte de Proteínas , Trichomonas vaginalis/metabolismo , Trichomonas vaginalis/genética , Filogenia , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Evolución Molecular , Humanos , Aparato de Golgi/metabolismo , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética , Animales
3.
BMC Biol ; 22(1): 130, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825681

RESUMEN

BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.


Asunto(s)
Transporte de Proteínas , Trichomonas vaginalis , Trichomonas vaginalis/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mitocondrias/metabolismo , Orgánulos/metabolismo
4.
Mol Cell Proteomics ; 21(1): 100174, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763061

RESUMEN

The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted ß-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.


Asunto(s)
Proteasas de Cisteína , Trichomonas vaginalis , Cisteína/metabolismo , Proteasas de Cisteína/metabolismo , Humanos , Lisosomas/metabolismo , Péptido Hidrolasas/metabolismo , Fagosomas/metabolismo , Proteómica , Trichomonas vaginalis/metabolismo
5.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674152

RESUMEN

The parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis is the use of drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Benzimidazole derivatives could offer an alternative in the search for new anti-trichomonas drugs. In this sense, two attractive candidates are the compounds O2N-BZM7 and O2N-BZM9 (1H-benzimidazole derivatives), since, through in vitro tests, they have shown a higher trichomonacide activity. In this study, we determined the effect on the expression level of metabolic genes in T. vaginalis. The results show that genes involved in redox balance (NADHOX, G6PD::6PGL) are overexpressed, as well as the gene that participates in the first reaction of glycolysis (CK); on the other hand, structural genes such as ACT and TUB are decreased in expression in trophozoites treated with the compound O2N-BZM9, which would probably affect its morphology, motility and virulence. These results align with the trichomonacidal activity of the compounds, with benzimidazole O2N-BZM9 being the most potent, with an IC50 value of 4.8 µM. These results are promising for potential future therapeutic applications.


Asunto(s)
Bencimidazoles , Trichomonas vaginalis , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Bencimidazoles/farmacología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Antiprotozoarios/farmacología , Antitricomonas/farmacología
6.
J Biol Chem ; 298(8): 102210, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780837

RESUMEN

Microaerophilic pathogens such as Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis have robust oxygen consumption systems to detoxify oxygen and maintain intracellular redox balance. This oxygen consumption results from H2O-forming NADH oxidase (NOX) activity of two distinct flavin-containing systems: H2O-forming NOXes and multicomponent flavodiiron proteins (FDPs). Neither system is membrane bound, and both recycle NADH into oxidized NAD+ while simultaneously removing O2 from the local environment. However, little is known about the specific contributions of these systems in T. vaginalis. In this study, we use bioinformatics and biochemical analyses to show that T. vaginalis lacks a NOX-like enzyme and instead harbors three paralogous genes (FDPF1-3), each encoding a natural fusion product between the N-terminal FDP, central rubredoxin (Rb), and C-terminal NADH:Rb oxidoreductase domains. Unlike a "stand-alone" FDP that lacks Rb and oxidoreductase domains, this natural fusion protein with fully populated flavin redox centers directly accepts reducing equivalents of NADH to catalyze the four-electron reduction of oxygen to water within a single polypeptide with an extremely high turnover. Furthermore, using single-particle cryo-EM, we present structural insights into the spatial organization of the FDP core within this multidomain fusion protein. Together, these results contribute to our understanding of systems that allow protozoan parasites to maintain optimal redox balance and survive transient exposure to oxic conditions.


Asunto(s)
Rubredoxinas , Trichomonas vaginalis , Flavinas/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Agua/metabolismo
7.
Bioorg Chem ; 141: 106888, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839143

RESUMEN

Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.


Asunto(s)
Antiprotozoarios , Chalconas , Tricomoniasis , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/metabolismo , Chalconas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tricomoniasis/tratamiento farmacológico , Tricomoniasis/parasitología , Antiprotozoarios/metabolismo , Fenoles/metabolismo
8.
Mol Microbiol ; 115(5): 959-967, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33599017

RESUMEN

Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract, causing a highly prevalent sexually transmitted infection. The parasite must change its transcriptional profile in order to establish and maintain infection. However, few core regulatory elements and transcription factors have been identified to date and little is known about other mechanisms that may control these rapid changes in gene expression during parasite infection. In the last years, epigenetic mechanisms involved in the regulation of gene expression have been gaining major attention in this parasite. In this review, we summarize and discuss the major advances of the last few years with regard to epigenetics (DNA methylation, post-translational histone modifications, and histone variants) in the parasite T. vaginalis. These studies can shed light into our current understanding of this parasite's biology with far-reaching implications for the prognosis and treatment of trichomoniasis.


Asunto(s)
Epigénesis Genética , Tricomoniasis/parasitología , Trichomonas vaginalis/genética , Animales , Metilación de ADN , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trichomonas vaginalis/metabolismo
9.
Mol Microbiol ; 116(6): 1489-1511, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34738285

RESUMEN

Trichomoniasis is a common and widespread sexually-transmitted infection, caused by the protozoan parasite Trichomonas vaginalis. T. vaginalis lacks the biosynthetic pathways for purines and pyrimidines, making nucleoside metabolism a drug target. Here we report the first comprehensive investigation into purine and pyrimidine uptake by T. vaginalis. Multiple carriers were identified and characterized with regard to substrate selectivity and affinity. For nucleobases, a high-affinity adenine transporter, a possible guanine transporter and a low affinity uracil transporter were found. Nucleoside transporters included two high affinity adenosine/guanosine/uridine/cytidine transporters distinguished by different affinities to inosine, a lower affinity adenosine transporter, and a thymidine transporter. Nine Equilibrative Nucleoside Transporter (ENT) genes were identified in the T. vaginalis genome. All were expressed equally in metronidazole-resistant and -sensitive strains. Only TvagENT2 was significantly upregulated in the presence of extracellular purines; expression was not affected by co-culture with human cervical epithelial cells. All TvagENTs were cloned and separately expressed in Trypanosoma brucei. We identified the main broad specificity nucleoside carrier, with high affinity for uridine and cytidine as well as purine nucleosides including inosine, as TvagENT3. The in-depth characterization of purine and pyrimidine transporters provides a critical foundation for the development of new anti-trichomonal nucleoside analogues.


Asunto(s)
Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas Protozoarias/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Tricomoniasis/parasitología , Trichomonas vaginalis/metabolismo , Transporte Biológico , Clonación Molecular , Humanos , Cinética , Proteínas de Transporte de Nucleósidos/química , Proteínas de Transporte de Nucleósidos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trichomonas vaginalis/química , Trichomonas vaginalis/genética
10.
PLoS Biol ; 17(1): e3000098, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608924

RESUMEN

Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent ß-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in ß-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Trichomonas vaginalis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Orgánulos , Filogenia , Transporte de Proteínas/fisiología , Trichomonas vaginalis/patogenicidad , Trichomonas vaginalis/fisiología
11.
Immunol Invest ; 51(5): 1127-1148, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33866944

RESUMEN

Trichomonas vaginalis is a parasitic protozoan that causes trichomoniasis. The involvement of NLRP3 inflammasome in trichomoniasis has been discussed in recent studies. The present study aimed to find out the involvement of Nlrp3, Nlrc4, and Aim2 in the BALB/c mouse model infected with symptomatic and asymptomatic isolates of T. vaginalis by quantitative real-time PCR and immunohistochemistry. Our results showed a significantly increased expression of Nlrp3 in the vaginal tissue of the symptomatic group on the 2nd dpi and 14th dpi in the asymptomatic group, respectively. The cervical tissue of asymptomatic groups expressed higher Nlrp3 on 14th dpi than the symptomatic group. The Nlrc4 was expressed on 14th dpi in the vaginal and cervical tissues of mice infected with asymptomatic group as compared to the symptomatic group. Aim2 expression in vaginal tissue was highest at early time points in both the infected groups as compared to controls. However, in cervical tissues, a significant increase of Aim2 expression was observed on 14th dpi in asymptomatic as compared to the symptomatic group. The significantly higher expression of caspase-1 and caspase-4 was observed in cervical tissues of the asymptomatic group on 14th dpi as compared to the symptomatic group, respectively. All NLRs together resulted in higher IL-1ß expression in the vaginal tissues of the symptomatic and asymptomatic groups. We conclude from this study that early expression of Nlrp3, Nlrc4, and Aim2 was seen in the symptomatic group as compared to the late-onset asymptomatic in the vaginal and cervical tissues.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Proteína con Dominio Pirina 3 de la Familia NLR , Tricomoniasis , Trichomonas vaginalis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Infecciones Asintomáticas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasas Iniciadoras/genética , Caspasas Iniciadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tricomoniasis/diagnóstico , Tricomoniasis/genética , Tricomoniasis/metabolismo , Tricomoniasis/parasitología , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Regulación hacia Arriba
12.
Cell Mol Life Sci ; 79(1): 11, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34951683

RESUMEN

Trichomonas vaginalis is a common sexually transmitted extracellular parasite that adheres to epithelial cells in the human urogenital tract. Extracellular vesicles (EVs) have been described as important players in the pathogenesis of this parasite as they deliver proteins and RNA into host cells and modulate parasite adherence. EVs are heterogeneous membrane vesicles released from virtually all cell types that collectively represent a new dimension of intercellular communication. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery contributes to several key mechanisms in which it reshapes membranes. Based on this, some components of the ESCRT have been implicated in EVs biogenesis in other cells. Here, we demonstrated that VPS32, a member of ESCRTIII complex, contribute to the biogenesis and cargo sorting of extracellular vesicles in the parasite T. vaginalis. Moreover, we observe that parasites overexpressing VPS32 have a striking increase in adherence to host cells compared to control parasites; demonstrating a key role for this protein in mediating host: parasite interactions. These results provide valuable information on the molecular mechanisms involved in extracellular vesicles biogenesis, cargo-sorting, and parasite pathogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Interacciones Huésped-Parásitos , Parásitos/citología , Trichomonas vaginalis/citología , Animales , Adhesión Celular , Línea Celular , Vesículas Extracelulares/ultraestructura , Humanos , Masculino , Parásitos/metabolismo , Próstata/parasitología , Espectrometría de Masas en Tándem , Trichomonas vaginalis/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(43): 21354-21360, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31601738

RESUMEN

Trichomonas vaginalis, a human-infective parasite, causes the most prevalent nonviral sexually transmitted infection worldwide. This pathogen secretes extracellular vesicles (EVs) that mediate its interaction with host cells. Here, we have developed assays to study the interface between parasite EVs and mammalian host cells and to quantify EV internalization by mammalian cells. We show that T. vaginalis EVs interact with glycosaminoglycans on the surface of host cells and specifically bind to heparan sulfate (HS) present on host cell surface proteoglycans. Moreover, competition assays using HS or removal of HS from the host cell surface strongly inhibit EV uptake, directly demonstrating that HS proteoglycans facilitate EV internalization. We identified an abundant protein on the surface of T. vaginalis EVs, 4-α-glucanotransferase (Tv4AGT), and show using isothermal titration calorimetry that this protein binds HS. Tv4AGT also competitively inhibits EV uptake, defining it as an EV ligand critical for EV internalization. Finally, we demonstrate that T. vaginalis EV uptake is dependent on host cell cholesterol and caveolin-1 and that internalization proceeds via clathrin-independent, lipid raft-mediated endocytosis. These studies reveal mechanisms used to drive host:pathogen interactions and further our understanding of how EVs are internalized by target cells to allow cross-talk between different cell types.


Asunto(s)
Endocitosis , Vesículas Extracelulares/metabolismo , Proteoglicanos/metabolismo , Vaginitis por Trichomonas/parasitología , Trichomonas vaginalis/metabolismo , Transporte Biológico , Caveolinas/metabolismo , Colesterol/metabolismo , Femenino , Interacciones Huésped-Parásitos , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vaginitis por Trichomonas/metabolismo , Vaginitis por Trichomonas/fisiopatología , Trichomonas vaginalis/genética
14.
Andrologia ; 54(5): e14397, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35191055

RESUMEN

Currently, the pathogenesis of prostate diseases is still under investigation, but it is generally clinically recognized to be related to the imbalance of prostate cell viability. Trichomonas vaginalis macrophage migration inhibitory factor (TvMIF) has been reported to induce the proliferation and invasion of prostate cancer cells, but for normal PECs, the relationship between them has not been reliably confirmed. Therefore, this research aims to determine the influence of macrophage TvMIF on prostate epithelial cells (PECs) and its preliminary mechanism. The activity of RWPE-1 human normal prostate epithelial cells, the inflammatory response state, the expression of miR-451, and the effect of miR-451 on RWPE-1 were detected after TvMIF intervention. We found that TvMIF can enhance RWPE-1 cell proliferation and activate inflammatory factors by suppressing miR-451, thus taking part in the development and proliferation of diseases such as prostatic hyperplasia and prostatitis.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , MicroARNs , Neoplasias de la Próstata , Tricomoniasis , Trichomonas vaginalis , Proliferación Celular , Células Epiteliales/metabolismo , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Masculino , MicroARNs/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Tricomoniasis/metabolismo , Tricomoniasis/patología , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
15.
Proteomics ; 21(20): e2100004, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558204

RESUMEN

All eukaryotic flagella are made of microtubules and driven by dynein motor proteins. However, every organism is unique in terms of its flagellar waveform, beat frequency, and its general motility pattern. With recent research, it is becoming clear that despite overall conservation in flagellar structure, the pattern of tubulin post-translational modifications within the flagella are diverse and may contribute to variations in their patterns of motility. In this study, we have analyzed the tubulin post-translational modification in the protozoan parasites Giardia lamblia and Trichomonas vaginalis using global, untargeted mass spectrometry. We show that tubulin monoglycylation is a modification localized to the flagella present in G. lamblia but absent in T. vaginalis. We also show the presence of glutamylated tubulin in both G. lamblia and T. vaginalis. Using MS/MS, we were also able to identify the previously unknown sites of monoglycylation in ß-tubulin at E438 and E439 in G. lamblia. Using isolated flagella, we also characterized the flagellar proteome in G. lamblia and T. vaginalis and identified 475 proteins in G. lamblia and 386 proteins in T. vaginalis flagella. Altogether, the flagellar proteomes as well as the sites of tubulin PTMs in these organisms, reveal potential mechanisms in regulating flagellar motilities in these neglected protozoan parasites.


Asunto(s)
Giardia lamblia , Trichomonas vaginalis , Flagelos/metabolismo , Giardia lamblia/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Espectrometría de Masas en Tándem , Trichomonas vaginalis/metabolismo , Tubulina (Proteína)
16.
Parasite Immunol ; 42(12): e12789, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32881004

RESUMEN

Trichomonas vaginalis, a flagellated extracellular protozoan parasite that infects the human genitourinary tract, is usually transmitted by sexual contact. Our previous study showed that the leukotriene B4 (LTB4 ), a T vaginalis-secreted lipid mediator, induces interleukin (IL)-8 production and promotes mast cell degranulation and migration via BLT1 in human. In this study, we investigated whether T vaginalis produces another leukotrienes and whether it causes increased MCP-1 production, mast cell migration and degranulation by activating mast cells. We found that cysteinyl leukotrienes (CysLTs) were contained in T vaginalis-derived secretory product (TvSP) by ELISA. The TvSP-stimulated human mast cell line (HMC-1) exhibited significantly increased monocyte chemoattractant protein-1 (MCP-1) secretion compared to the unstimulated cells. Inhibition of NOX2 activation of cells by treatment of NOX inhibitor or NOX2 siRNA reduced TvSP-stimulated MCP-1 production in HMC-1 cells. It was also confirmed that the receptor for CysLTs is expressed in mast cells. The CysLT receptor (CysLTR) antagonist inhibited TvSP-stimulated MCP-1 production of mast cells, as well as ROS production, migration and degranulation of mast cells, and reduced phospho-NF-kB expression. These results suggest that T vaginalis-secreted CysLTs promote migration, degranulation and MCP-1 production in human mast cells through CysLT receptor-mediated NOX2 activation.


Asunto(s)
Quimiocina CCL2/metabolismo , Cisteína/metabolismo , Factores Inmunológicos/metabolismo , Leucotrienos/metabolismo , Mastocitos/fisiología , Trichomonas vaginalis/metabolismo , Degranulación de la Célula , Línea Celular , Movimiento Celular , Humanos , Mastocitos/metabolismo , NADPH Oxidasa 2/metabolismo , Receptores de Leucotrienos/metabolismo , Transducción de Señal
17.
Ann Clin Microbiol Antimicrob ; 19(1): 5, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992328

RESUMEN

Recurrent vulvovaginal infections (RVVI) has not only become an epidemiological and clinical problem but also include large social and psychological consequences. Understanding the mechanisms of both commensalism and pathogenesis are necessary for the development of efficient diagnosis and treatment strategies for these enigmatic vaginal infections. Through this review, an attempt has been made to analyze vaginal microbiota (VMB) from scratch and to provide an update on its current understanding in relation to health and common RVVI i.e. bacterial vaginosis, vulvovaginal candidiaisis and Trichomoniasis, making the present review first of its kind. For this, potentially relevant studies were retrieved from data sources and critical analysis of the literature was made. Though, culture-independent methods have greatly unfolded the mystery regarding vaginal bacterial microbiome, there are only a few studies regarding the composition and diversity of vaginal mycobiome and different Trichomonas vaginalis strains. This scenario suggests a need of further studies based on comparative genomics of RVVI pathogens to improve our perceptive of RVVI pathogenesis that is still not clear (Fig. 5). Besides this, the review details the rationale for Lactobacilli dominance and changes that occur in healthy VMB throughout a women's life. Moreover, the list of possible agents continues to expand and new species recognised in both health and VVI are updated in this review. The review concludes with the controversies challenging the widely accepted dogma i.e. "VMB dominated with Lactobacilli is healthier than a diverse VMB". These controversies, over the past decade, have complicated the definition of vaginal health and vaginal infections with no definite conclusion. Thus, further studies on newly recognised microbial agents may reveal answers to these controversies. Conversely, VMB of women could be an answer but it is not enough to just look at the microbiology. We have to look at the woman itself, as VMB which is fine for one woman may be troublesome for others. These differences in women's response to the same VMB may be determined by a permutation of behavioural, cultural, genetic and various other anonymous factors, exploration of which may lead to proper definition of vaginal health and disease.


Asunto(s)
Candidiasis Vulvovaginal , Microbiota , Vaginitis por Trichomonas , Vagina/microbiología , Vaginosis Bacteriana , Biopelículas/crecimiento & desarrollo , Candida/aislamiento & purificación , Candida/metabolismo , Candida albicans/aislamiento & purificación , Candida albicans/metabolismo , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/patología , Candidiasis Vulvovaginal/transmisión , Coinfección/microbiología , Coinfección/parasitología , Femenino , Gardnerella vaginalis/aislamiento & purificación , Interacciones Microbiota-Huesped , Humanos , Lactobacillus/aislamiento & purificación , Lactobacillus/metabolismo , Interacciones Microbianas , Microbiota/fisiología , Recurrencia , Vaginitis por Trichomonas/parasitología , Vaginitis por Trichomonas/patología , Vaginitis por Trichomonas/transmisión , Trichomonas vaginalis/aislamiento & purificación , Trichomonas vaginalis/metabolismo , Vagina/parasitología , Vaginosis Bacteriana/microbiología , Vaginosis Bacteriana/patología , Vaginosis Bacteriana/transmisión , Factores de Virulencia/metabolismo
18.
Mol Cell Proteomics ; 17(2): 304-320, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29233912

RESUMEN

The secretion of virulence factors by parasitic protists into the host environment plays a fundamental role in multifactorial host-parasite interactions. Several effector proteins are known to be secreted by Trichomonas vaginalis, a human parasite of the urogenital tract. However, a comprehensive profiling of the T. vaginalis secretome remains elusive, as do the mechanisms of protein secretion. In this study, we used high-resolution label-free quantitative MS to analyze the T. vaginalis secretome, considering that secretion is a time- and temperature-dependent process, to define the cutoff for secreted proteins. In total, we identified 2 072 extracellular proteins, 89 of which displayed significant quantitative increases over time at 37 °C. These 89 bona fide secreted proteins were sorted into 13 functional categories. Approximately half of the secreted proteins were predicted to possess transmembrane helixes. These proteins mainly include putative adhesins and leishmaniolysin-like metallopeptidases. The other half of the soluble proteins include several novel potential virulence factors, such as DNaseII, pore-forming proteins, and ß-amylases. Interestingly, current bioinformatic tools predicted the secretory signal in only 18% of the identified T. vaginalis-secreted proteins. Therefore, we used ß-amylases as a model to investigate the T. vaginalis secretory pathway. We demonstrated that two ß-amylases (BA1 and BA2) are transported via the classical endoplasmic reticulum-to-Golgi pathways, and in the case of BA1, we showed that the protein is glycosylated with multiple N-linked glycans of Hex5HexNAc2 structure. The secretion was inhibited by brefeldin A but not by FLI-06. Another two ß-amylases (BA3 and BA4), which are encoded in the T. vaginalis genome but absent from the secretome, were targeted to the lysosomal compartment. Collectively, under defined in vitro conditions, our analysis provides a comprehensive set of constitutively secreted proteins that can serve as a reference for future comparative studies, and it provides the first information about the classical secretory pathway in this parasite.


Asunto(s)
Proteínas Protozoarias/metabolismo , Trichomonas vaginalis/metabolismo , beta-Amilasa/metabolismo , Filogenia , Proteínas Protozoarias/genética , Trichomonas vaginalis/genética
19.
Mol Cell Proteomics ; 17(11): 2229-2241, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29444981

RESUMEN

The flagellated protozoan parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted infection worldwide. As an obligate extracellular pathogen, adherence to epithelial cells is critical for parasite survival within the human host and a better understanding of this process is a prerequisite for the development of therapies to combat infection. In this sense, recent work has shown S-acylation as a key modification that regulates pathogenesis in different protozoan parasites. However, there are no reports indicating whether this post-translational modification is a mechanism operating in T. vaginalis In order to study the extent and function of S-acylation in T. vaginalis biology, we undertook a proteomic study to profile the full scope of S-acylated proteins in this parasite and reported the identification of 363 proteins involved in a variety of biological processes such as protein transport, pathogenesis related and signaling, among others. Importantly, treatment of parasites with the palmitoylation inhibitor 2-bromopalmitate causes a significant decrease in parasite: parasite aggregation as well as adherence to host cells suggesting that palmitoylation could be modifying proteins that are key regulators of Trichomonas vaginalis pathogenesis.


Asunto(s)
Lipoilación , Proteínas Protozoarias/metabolismo , Trichomonas vaginalis/metabolismo , Adhesividad , Secuencia de Aminoácidos , Ontología de Genes , Células HeLa , Humanos , Dominios Proteicos , Proteoma/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación
20.
Parasitol Res ; 119(8): 2587-2595, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32524267

RESUMEN

Lycorine is an Amaryllidaceae alkaloid that presents anti-Trichomonas vaginalis activity. T. vaginalis causes trichomoniasis, the most common non-viral sexually transmitted infection. The modulation of T. vaginalis purinergic signaling through the ectonucleotidases, nucleoside triphosphate diphosphohydrolase (NTPDase), and ecto-5'-nucleotidase represents new targets for combating the parasite. With this knowledge, the aim of this study was to investigate whether NTPDase and ecto-5'-nucleotidase inhibition by lycorine could lead to extracellular ATP accumulation. Moreover, the lycorine effect on the reactive oxygen species (ROS) production by neutrophils and parasites was evaluated as well as the alkaloid toxicity. The metabolism of purines was assessed by HPLC. ROS production was measured by flow cytometry. Cytotoxicity against epithelial vaginal cells and fibroblasts was tested, as well as the hemolytic effect of lycorine and its in vivo toxicity in Galleria mellonella larvae. Our findings showed that lycorine caused ATP accumulation due to NTPDase inhibition. The alkaloid did not affect the ROS production by T. vaginalis; however, it increased ROS levels in neutrophils incubated with lycorine-treated trophozoites. Lycorine was cytotoxic against vaginal epithelial cells and fibroblasts; conversely, it was not hemolytic neither exhibited toxicity against the in vivo model of G. mellonella larvae. Overall, besides having anti-T. vaginalis activity, lycorine modulates ectonucleotidases and stimulates neutrophils to secrete ROS. This mechanism of action exerted by the alkaloid could enhance the susceptibility of T. vaginalis to host immune cell, contributing to protozoan clearance.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Amaryllidaceae/química , Antiprotozoarios/farmacología , Neutrófilos/metabolismo , Nucleósido-Trifosfatasa/antagonistas & inhibidores , Fenantridinas/farmacología , Extractos Vegetales/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tricomoniasis/metabolismo , Trichomonas vaginalis/enzimología , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/metabolismo , Humanos , Neutrófilos/efectos de los fármacos , Nucleósido-Trifosfatasa/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tricomoniasis/parasitología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/enzimología , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA