Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
J Chem Ecol ; 50(5-6): 237-249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713322

RESUMEN

The orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), is a significant wheat pest in the Prairie Provinces of Canada and northern regions of the USA. Wheat phenology plays a critical role in wheat midge oviposition. We hypothesized that S. mosellana oviposition behaviour is influenced by volatile organic compounds (VOCs) emitted by wheat at two adjacent wheat growth stages: preanthesis and postanthesis. A higher number of S. mosellana eggs laid on preanthesis than postanthesis spikes in an oviposition choice experiment using the susceptible spring wheat cultivar 'Roblin'. In preanthesis, wheat emitted higher amounts of Z-3-hexenyl acetate (Z3-06:OAc) than at the postanthesis stage. Higher amounts of methyl ketones such as 2-tridecanone, 2-pentadecanone, and 2-undecanone were emitted by wheat in the postanthesis stage and these VOCs were sensitive to S. mosellana antennae used in the Gas Chromatography-Electroantennographic Detection. Females were attracted to synthetic Z3-06:OAc but were deterred by 2-tridecanone relative to the solvent control in the vertical Y-tube olfactometer. 2-Undecanone and 2-pentadecanone did not show any attractiveness or deterrence. In a no-choice oviposition experiment, fewer eggs were laid in preanthesis wheat exposed to a synthetic VOC blend of Z3-06:OAc, 2-undecanone, 2-tridecanone, and 2-pentadecanone at the concentrations released by postanthesis spikes. This study shows that the reduction of Z3-06:OAc, in the VOC mix, and possibly the increase in 2-tridecanone, are likely responsible for the reduction in oviposition on postanthesis wheat. These results elucidate for the first time the role of specific VOCs mediating S. mosellana oviposition in preanthesis and postanthesis wheat.


Asunto(s)
Dípteros , Oviposición , Triticum , Compuestos Orgánicos Volátiles , Animales , Triticum/química , Triticum/metabolismo , Triticum/parasitología , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Femenino , Oviposición/efectos de los fármacos , Dípteros/fisiología , Dípteros/efectos de los fármacos , Acetatos/farmacología , Antenas de Artrópodos/fisiología , Antenas de Artrópodos/efectos de los fármacos
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731798

RESUMEN

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Asunto(s)
Áfidos , Triticum , Animales , Áfidos/fisiología , Triticum/parasitología , Triticum/genética , Triticum/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Proteínas y Péptidos Salivales/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Adaptación Fisiológica , Enfermedades de las Plantas/parasitología , Regulación de la Expresión Génica de las Plantas , Nicotiana/parasitología , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
3.
BMC Plant Biol ; 23(1): 529, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904124

RESUMEN

BACKGROUND: In hexaploid wheat, quantitative trait loci (QTL) and meta-QTL (MQTL) analyses were conducted to identify genomic regions controlling resistance to cereal cyst nematode (CCN), Heterodera avenae. A mapping population comprising 149 RILs derived from the cross HUW 468 × C 306 was used for composite interval mapping (CIM) and inclusive composite interval mapping (ICIM). RESULTS: Eight main effect QTLs on three chromosomes (1B, 2A and 3A) were identified using two repeat experiments. One of these QTLs was co-localized with a previously reported wheat gene Cre5 for resistance to CCN. Seven important digenic epistatic interactions (PVE = 5% or more) were also identified, each involving one main effect QTL and another novel E-QTL. Using QTLs earlier reported in literature, two meta-QTLs were also identified, which were also used for identification of 57 candidate genes (CGs). Out of these, 29 CGs have high expression in roots and encoded the following proteins having a role in resistance to plant parasitic nematodes (PPNs): (i) NB-ARC,P-loop containing NTP hydrolase, (ii) Protein Kinase, (iii) serine-threonine/tyrosine-PK, (iv) protein with leucine-rich repeat, (v) virus X resistance protein-like, (vi) zinc finger protein, (vii) RING/FYVE/PHD-type, (viii) glycosyl transferase, family 8 (GT8), (ix) rubisco protein with small subunit domain, (x) protein with SANT/Myb domain and (xi) a protein with a homeobox. CONCLUSION: Identification and selection of resistance loci with additive and epistatic effect along with two MQTL and associated CGs, identified in the present study may prove useful for understanding the molecular basis of resistance against H. avenae in wheat and for marker-assisted selection (MAS) for breeding CCN resistant wheat cultivars.


Asunto(s)
Sitios de Carácter Cuantitativo , Tylenchoidea , Animales , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Triticum/parasitología , Fitomejoramiento , Fenotipo
4.
Plant Dis ; 107(12): 3817-3824, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37227435

RESUMEN

Root-lesion nematode (RLN; Pratylenchus neglectus) is a migratory endoparasite and a major soilborne pathogen that affects wheat (Triticum spp.) production worldwide. Genetic resistance is one of the most economical and effective ways to manage P. neglectus in wheat. This study evaluated 37 local cultivars and germplasm lines in seven greenhouse experiments, including 26 hexaploid wheat, six durum wheat, two synthetic hexaploid wheat, one emmer wheat, and two triticale for P. neglectus resistance from 2016 to 2020. North Dakota field soils infested with two RLN populations (350 to 1,125 nematodes per kilogram of soil) were used for resistance screening under controlled greenhouse conditions. The final nematode population density for each cultivar and line was counted under the microscope to categorize the resistance ranking of these entries as resistant, moderately resistant, moderately susceptible, and susceptible. Out of the 37 cultivars and lines, one was classified as resistant (Brennan); 18 were moderately resistant (Divide, Carpio, Prosper, Advance, Alkabo, SY Soren, Barlow, Bolles, Select, Faller, Briggs, WB Mayville, SY Ingmar, W7984, PI 626573, Ben, Grandin, and Villax St. Jose); 11 were moderately susceptible; and seven were susceptible to P. neglectus. The resistant to moderately resistant lines identified in this study could be used in breeding programs after the resistance genes or loci are further elucidated. This research provides valuable information about P. neglectus resistance among wheat and triticale cultivars used in the Upper Midwest region of the United States.


Asunto(s)
Triticum , Tylenchoidea , Animales , Triticum/genética , Triticum/parasitología , Sitios de Carácter Cuantitativo , North Dakota , Enfermedades de las Plantas/parasitología , Fitomejoramiento , Tylenchoidea/genética , Resistencia a la Enfermedad/genética
5.
Plant J ; 107(3): 698-712, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974322

RESUMEN

The pathogen cereal cyst nematode (CCN) is deleterious to Triticeae crops and is a threat to the global crop yield. Accession no. 1 of Aegilops variabilis, a relative of Triticum aestivum (bread wheat), is highly resistant to CCN. Our previous study demonstrated that the expression of the phenylalanine ammonia lyase (PAL) gene AevPAL1 in Ae. variabilis is strongly induced by CCN. PAL, the first enzyme of phenylpropanoid metabolism, is involved in abiotic and biotic stress responses. However, its role in plant-CCN interaction remains unknown. In the present study, we proved that AevPAL1 helps to confer CCN resistance through affecting the synthesis of salicylic acid (SA) and downstream secondary metabolites. The silencing of AevPAL1 increased the incidence of CCN infection in roots and decreased the accumulation of SA and phenylalanine (Phe)-derived specialized metabolites. The exogenous pre-application of SA also improved CCN resistance. Additionally, the functions of PAL in phenylpropanoid metabolism correlated with tryptophan decarboxylase (TDC) functioning in tryptophan metabolism pathways. The silencing of either AevPAL1 or AevTDC1 exhibited a concomitant reduction in the expression of both genes and the contents of metabolites downstream of PAL and TDC. These results suggested that AevPAL1, possibly in coordination with AevTDC1, positively contributes to CCN resistance by altering the downstream secondary metabolites and SA content in Ae. variabilis. Moreover, AevPAL1 overexpression significantly enhanced CCN resistance in bread wheat and did not exhibit significant negative effects on yield-related traits, suggesting that AevPAL1 is valuable for the genetic improvement of CCN resistance in bread wheat.


Asunto(s)
Nematodos/fisiología , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Triticum/metabolismo , Triticum/parasitología , Animales , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas/genética
6.
J Sci Food Agric ; 102(1): 223-232, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34086293

RESUMEN

BACKGROUND: Tribolium castaneum (Herbst) is one of the most important secondary storage pests of all types of flour and flour-based products. The present study focuses on the fragment producing behaviour of T. castaneum in wheat flour during storage and its effect on the quality parameters and defect action level (DAL) of fragments. The US Food and Drug Administration has set a DAL of 75 insect fragments in 50 g of flour. Box-Behnken design was used to optimize the storage conditions (storage period in days and temperature in degrees Celsius) and insect density (numbers) to keep insect fragments below the DAL. RESULTS: Optimization results indicated that the presence of single number of adult of T. castaneum is enough to cross the DAL of insect fragments within a storage period of 21 days at a storage temperature of 30 °C. Insect fragments cause perceptible changes in the quality of wheat flour. When sample attained DAL of T. castaneum fragments in wheat flour,the various quality parameters were analysed in that moisture content of wheat flour was 10.8 ± 0.26%, total colour change was 2.052 (ΔE value), T. castaneum progeny emergence was 19.66 ± 1, uric acid was 1.8 ± 0.16 g kg-1 and microbial count was 7.34 ± 0.5 cfu g-1 . CONCLUSIONS: Results from the present study indicate that the presence of even a single adult of stored pest in wheat flour should not be ignored. It is mandatory to determine the threshold level and frequent sampling is required to achieve zero tolerance of stored product insects in food commodities. © 2021 Society of Chemical Industry.


Asunto(s)
Harina/análisis , Tribolium/química , Triticum/química , Animales , Color , Harina/parasitología , Contaminación de Alimentos/análisis , Calidad de los Alimentos , Almacenamiento de Alimentos , Tribolium/metabolismo , Triticum/parasitología , Ácido Úrico/análisis , Ácido Úrico/metabolismo
7.
Theor Appl Genet ; 134(2): 647-660, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33200319

RESUMEN

KEY MESSAGE: A major QTL for oviposition deterrence to orange wheat blossom midge was detected on chromosome 1A in the Canadian breeding line BW278 that was inherited from the Chinese variety Sumai-3. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin, Diptera: Cecidomyiidae) is an important insect pest of wheat (Triticum aestivum L.) that reduces both grain yield and quality. Oviposition deterrence results in a reduction of eggs deposited on spikes relative to that observed on a wheat line preferred by OWBM. Quantification of oviposition deterrence is labor-intensive, so wheat breeders require efficient DNA markers for the selection of this trait. The objective of this study was to identify quantitative trait loci (QTL) for oviposition deterrence in a doubled haploid (DH) population developed from the spring wheat cross Superb/BW278. The DH population and check varieties were evaluated for OWBM kernel damage from five field nurseries over three growing seasons. QTL analysis identified major effect loci on chromosomes 1A (QSm.mrc-1A) and 5A (QSm.mrc-5A). Reduced kernel damage was contributed by BW278 at QSm.mrc-1A and Superb at QSm.mrc-5A. QSm.mrc-1A mapped to the approximate location of the oviposition deterrence QTL previously found in the American variety Reeder. However, haplotype analysis revealed that BW278 inherited this oviposition deterrence allele from the Chinese spring wheat variety Sumai-3. QSm.mrc-5A mapped to the location of awn inhibitor gene B1, suggesting that awns hinder OWBM oviposition. Single-nucleotide polymorphisms (SNPs) were identified for predicting the presence or absence of QSm.mrc-1A based upon haplotype. Functional annotation of candidate genes in 1A QTL intervals revealed eleven potential candidate genes, including a gene involved in terpenoid biosynthesis. SNPs for QSm.mrc-1A and fully awned spikes provide a basis for the selection of oviposition deterrence to OWBM.


Asunto(s)
Ceratopogonidae/anatomía & histología , Ceratopogonidae/fisiología , Resistencia a la Enfermedad/genética , Genes de Plantas , Oviposición , Enfermedades de las Plantas/genética , Triticum/genética , Animales , Mapeo Cromosómico , Resistencia a la Enfermedad/inmunología , Haploidia , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/parasitología
8.
Theor Appl Genet ; 134(4): 993-1005, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33606050

RESUMEN

KEY MESSAGE: Cmc4, a wheat curl mite resistance gene, was delimited to a 523 kb region and a diagnostic marker haplotype was identified for selecting Cmc4 in breeding programs. Wheat curl mite (WCM, Aceria tosichella Keifer) is a disastrous wheat pest in many wheat-growing regions worldwide. WCM not only directly affects wheat yield, but also transmits wheat streak mosaic virus. Growing WCM resistant cultivars is the most economical and sustainable method to reduce its damage. A hard winter wheat breeding line OK05312 (PI 670019) carries Cmc4 gene resistance to A. tosichella and has many desirable agronomic traits. To finely map Cmc4 in OK05312, two recombinant inbred line populations were developed from crosses between OK05312 and two susceptible cultivars, SD06165 and Jerry, genotyped using single nucleotide polymorphism (SNP) markers generated from genotyping-by-sequencing (GBS), and phenotyped for WCM resistance. Gene mapping using the two SNP maps confirmed Cmc4 in OK05312 that explained up to 68% of the phenotypic variation. Further analysis delimited Cmc4 to a ~ 523 kb region between SNPs SDOKSNP6314 and SDOKSNP2805 based on the Ae. tauschii reference genome. We developed 18 polymorphic Kompetitive Allele Specific PCR (KASP) markers using the sequences of GBS-SNPs in this region and 23 additional KASP markers based on the SNPs between the parents derived from 90K SNP chips. The KASP markers SDOKSNP6314 and SDOKSNP9699 are closest to Cmc4 and can be used to diagnose the presence of Cmc4 in wheat breeding programs. Haplotype analysis suggested that CmcTAM112 in TAM112 might be the same gene as Cmc4.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Triticum/genética , Animales , Resistencia a la Enfermedad/inmunología , Ácaros , Fenotipo , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Triticum/parasitología
9.
Plant Cell Rep ; 40(2): 393-403, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33388893

RESUMEN

KEY MESSAGE: Resistance conferred by the Cre8 locus of wheat prevents cereal cyst nematode feeding sites from reaching and invading root metaxylem vessels. Cyst nematodes develop syncytial feeding sites within plant roots. The success of these sites is affected by host plant resistance. In wheat (Triticum aestivum L.), 'Cre' loci affect resistance against the cereal cyst nematode (CCN) Heterodera avenae. To investigate how one of these loci (Cre8, on chromosome 6B) confers resistance, CCN-infected root tissue from susceptible (-Cre8) and resistant (+Cre8) wheat plants was examined using confocal microscopy and laser ablation tomography. Confocal analysis of transverse sections showed that feeding sites in the roots of -Cre8 plants were always adjacent to metaxylem vessels, contained many intricate 'web-like' cell walls, and sometimes 'invaded' metaxylem vessels. In contrast, feeding sites in the roots of +Cre8 plants were usually not directly adjacent to metaxylem vessels, had few inner cell walls and did not 'invade' metaxylem vessels. Models based on data from laser ablation tomography confirmed these observations. Confocal analysis of longitudinal sections revealed that CCN-induced xylem modification that had previously been reported for susceptible (-Cre8) wheat plants is less extreme in resistant (+Cre8) plants. Application of a lignin-specific stain revealed that secondary thickening around xylem vessels in CCN-infected roots was greater in +Cre8 plants than in -Cre8 plants. Collectively, these results indicate that Cre8 resistance in wheat acts by preventing cyst nematode feeding sites from reaching and invading root metaxylem vessels.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Triticum/parasitología , Tylenchida/fisiología , Animales , Pared Celular/parasitología , Pared Celular/ultraestructura , Susceptibilidad a Enfermedades , Sitios Genéticos , Imagenología Tridimensional , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Raíces de Plantas/ultraestructura , Triticum/genética , Triticum/ultraestructura , Xilema/genética , Xilema/parasitología , Xilema/ultraestructura
10.
Bull Entomol Res ; 111(5): 528-543, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33766180

RESUMEN

This study was carried out to investigate the efficacy of the non-thermal atmospheric pressure plasma produced with dielectric barrier discharge (APPD) using air as a processing gas and microwave energy to control Tribolium castaneum and Trogoderma granarium adults and larvae in wheat grains. Insects' mortality was found to be power and time-dependent. The results indicated that non-thermal APPD and the microwave have enough insecticidal effect on the target pests. From the bioassay, LT50's and LT90's levels were estimated, T. granarium larvae appeared more tolerant to non-thermal APPD and the microwave energy than adults 7 days post-exposure. The germination percentage of wheat grains increased as the time of exposure to the non-thermal APPD increased. On the contrary, the germination percentage of wheat grains decreased as the time of exposure to the microwave increased. In addition, changes in antioxidant enzyme activities, catalase (CAT), glutathione S-transferase (GST) and peroxidase, in adults and larvae were examined after 24 h post-treatment to non-thermal APPD at 15.9 W power level, which caused 50% mortality. The activity of CAT, GST and lipid peroxide in the treated larvae showed a significant increase post-exposure to the non-thermal APPD at 15.9 W power level. On the other hand, no significant change in GSH-Px activity was observed. Reductions in the level of glutathione (GSH) and protein content occurred in treated larvae in comparison with the control.


Asunto(s)
Escarabajos/efectos de la radiación , Microondas , Gases em Plasma , Tribolium/efectos de la radiación , Animales , Escarabajos/enzimología , Escarabajos/crecimiento & desarrollo , Germinación , Larva/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Tribolium/enzimología , Tribolium/crecimiento & desarrollo , Triticum/parasitología , Triticum/efectos de la radiación
11.
Bull Entomol Res ; 111(5): 544-552, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33814021

RESUMEN

Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.


Asunto(s)
Áfidos/efectos de los fármacos , Ácido Salicílico/farmacología , Triticum/parasitología , Animales , Áfidos/crecimiento & desarrollo , Hojas de la Planta/química , Plantones , Triticum/enzimología , Triticum/inmunología
12.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800120

RESUMEN

(1) Background: The wheat curl mite (Aceria tosichella Keifer) is a key pest of wheat (Triticum aestivum L.) worldwide. While a number of wheat cultivars resistant to the mites have been employed to minimize the impact on the yield and quality of grain, little is known regarding the mechanisms underlying host plant resistance. Therefore, the goal of this study was to explore changes in transcriptome of resistant and susceptible wheat in order to quantify the molecular changes that drive host plant resistance. (2) Methods: Two varieties, wheat curl mite-susceptible (Karl 92) and wheat curl mite-resistant (TAM112) wheat, both at 2-week postemergence, were used in this study. Half of the plants were exposed to wheat curl mite herbivory and half remained mite-free and served as controls. Transcriptome changes were quantified using RNA-seq and compared among treatments to identify genes and pathways affected by herbivores. (3) Results: We identified a number of genes and pathways involved in plant defenses against pathogens, herbivores, and abiotic stress that were differentially expressed in the resistant wheat exposed to wheat curl mite herbivory but were unaffected in the susceptible wheat. (4) Conclusions: Our outcomes indicated that resistant wheat counteracts wheat curl mite exposure through effective induction of genes and pathways that enhance its defense responses.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácaros , Enfermedades de las Plantas/parasitología , Transcriptoma , Triticum , Animales , Triticum/genética , Triticum/metabolismo , Triticum/parasitología
13.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830231

RESUMEN

Food insecurity and malnutrition have reached critical levels with increased human population, climate fluctuations, water shortage; therefore, higher-yielding crops are in the spotlight of numerous studies. Abiotic factors affect the yield of staple food crops; among all, wheat stem sawfly (Cephus cinctus Norton) and orange wheat blossom midge (Sitodiplosis mosellana) are two of the most economically and agronomically harmful insect pests which cause yield loss in cereals, especially in wheat in North America. There is no effective strategy for suppressing this pest damage yet, and only the plants with intrinsic tolerance mechanisms such as solid stem phenotypes for WSS and antixenosis and/or antibiosis mechanisms for OWBM can limit damage. A major QTL and a causal gene for WSS resistance were previously identified in wheat, and 3 major QTLs and a causal gene for OWBM resistance. Here, we present a comparative analysis of coding and non-coding features of these loci of wheat across important cereal crops, barley, rye, oat, and rice. This research paves the way for our cloning and editing of additional WSS and OWBM tolerance gene(s), proteins, and metabolites.


Asunto(s)
Dípteros/patogenicidad , Resistencia a la Enfermedad/genética , Genoma de Planta , Himenópteros/patogenicidad , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Animales , Avena/genética , Avena/inmunología , Avena/parasitología , Mapeo Cromosómico/métodos , Dípteros/fisiología , Grano Comestible , Código Genético , Hordeum/genética , Hordeum/inmunología , Hordeum/parasitología , Humanos , Himenópteros/fisiología , Oryza/genética , Oryza/inmunología , Oryza/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Carácter Cuantitativo Heredable , Secale/genética , Secale/inmunología , Secale/parasitología , Especificidad de la Especie , Triticum/inmunología , Triticum/parasitología
14.
Molecules ; 26(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806970

RESUMEN

Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsion (HvNE) was developed and evaluated for managing Tribolium confusum, T. castaneum, and Tenebrio molitor, as an eco-friendly wheat protectant. Larval and adult mortality was evaluated after 4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days, testing two HvNE concentrations (500 ppm and 1000 ppm). T. confusum and T. castaneum adults and T. molitor larvae were tolerant to both concentrations of the HvNE, reaching 13.0%, 18.7%, and 10.3% mortality, respectively, at 1000 ppm after 7 days of exposure. However, testing HvNE at 1000 ppm, the mortality of T. confusum and T. castaneum larvae and T. molitor adults 7 days post-exposure reached 92.1%, 97.4%, and 100.0%, respectively. Overall, the HvNE can be considered as an effective adulticide or larvicide, depending on the target species. Our results highlight the potential of H. voyronii essential oil for developing green nanoinsecticides to be used in real-world conditions against key stored-product pests.


Asunto(s)
Insecticidas , Laurales/química , Aceites Volátiles , Tribolium/crecimiento & desarrollo , Triticum/parasitología , Animales , Emulsiones , Insecticidas/química , Insecticidas/farmacología , Larva/crecimiento & desarrollo , Aceites Volátiles/química , Aceites Volátiles/farmacología
15.
BMC Genomics ; 21(1): 638, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933469

RESUMEN

BACKGROUND: Plant viruses maintain intricate interactions with their vector and non-vector insects and can impact the fitness of insects. However, the details of their molecular and cellular mechanisms have not been studied well. We compared the transcriptome-level responses in vector and non-vector aphids (Schizaphis graminum and Rhopalosiphum padi, respectively) after feeding on wheat plants with viral infections (Barley Yellow Dwarf Virus (BYDV) and Wheat dwarf virus (WDV), respectively). We conducted differentially expressed gene (DEG) annotation analyses and observed DEGs related to immune pathway, growth, development, and reproduction. And we conducted cloning and bioinformatic analyses of the key DEG involved in immune. RESULTS: For all differentially expressed gene analyses, the numbers of DEGs related to immune, growth, development, reproduction and cuticle were higher in vector aphids than in non-vector aphids. STAT5B (signal transducer and activator of transcription 5B), which is involved in the JAK-STAT pathway, was upregulated in R. padi exposed to WDV. The cloning and bioinformatic results indicated that the RpSTAT5B sequence contains a 2082 bp ORF encoding 693 amino acids. The protein molecular weight is 79.1 kD and pI is 8.13. Analysis indicated that RpSTAT5B is a non-transmembrane protein and a non-secreted protein. Homology and evolutionary analysis indicated that RpSTAT5B was closely related to R. maidis. CONCLUSIONS: Unigene expression analysis showed that the total number of differentially expressed genes (DEGs) in the vector aphids was higher than that in the non-vector aphids. Functional enrichment analysis showed that the DEGs related to immunity, growth and reproduction in vector aphids were higher than those in non-vector aphids, and the differentially expressed genes related to immune were up-regulated. This study provides a basis for the evaluation of the response mechanisms of vector/non-vector insects to plant viruses.


Asunto(s)
Áfidos/genética , Insectos Vectores/genética , Transcriptoma , Animales , Áfidos/metabolismo , Áfidos/patogenicidad , Áfidos/virología , Dicistroviridae/patogenicidad , Geminiviridae/patogenicidad , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Insectos Vectores/patogenicidad , Insectos Vectores/virología , Quinasas Janus/genética , Quinasas Janus/metabolismo , Luteovirus/patogenicidad , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Triticum/parasitología , Triticum/virología
16.
BMC Genomics ; 21(1): 339, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366323

RESUMEN

BACKGROUND: Schizaphis graminum is one of the most important and devastating cereal aphids worldwide, and its feeding can cause chlorosis and necrosis in wheat. However, little information is available on the wheat defence responses triggered by S. graminum feeding at the molecular level. RESULTS: Here, we collected and analysed transcriptome sequencing data from leaf tissues of wheat infested with S. graminum at 2, 6, 12, 24 and 48 hpi (hours post infestation). A total of 44,835 genes were either up- or downregulated and differed significantly in response to aphid feeding. The expression levels of a number of genes (9761 genes) were significantly altered within 2 hpi and continued to change during the entire 48 h experiment. Gene Ontology analysis showed that the downregulated DEGs were mainly enriched in photosynthesis and light harvesting, and the total chlorophyll content in wheat leaves was also significantly reduced after S. graminum infestation at 24 and 48 hpi. However, a number of related genes of the salicylic acid (SA)-mediated defence signalling pathway and MAPK-WRKY pathway were significantly upregulated at early feeding time points (2 and 6 hpi). In addition, the gene expression and activity of antioxidant enzymes, such as peroxidase and superoxide dismutase, were rapidly increased at 2, 6 and 12 hpi. DAB staining results showed that S. graminum feeding induced hydrogen peroxide (H2O2) accumulation at the feeding sites at 2 hpi, and increased H2O2 production was detected with the increases in aphid feeding time. Pretreatment with diphenylene iodonium, an NADPH oxidase inhibitor, repressed the H2O2 accumulation and expression levels of SA-associated defence genes in wheat. CONCLUSIONS: Our transcriptomic analysis revealed that defence-related pathways and oxidative stress in wheat were rapidly induced within hours after the initiation of aphid feeding. Additionally, NADPH oxidase plays an important role in aphid-induced defence responses and H2O2 accumulation in wheat. These results provide valuable insight into the dynamic transcriptomic responses of wheat leaves to phytotoxic aphid feeding and the molecular mechanisms of aphid-plant interactions.


Asunto(s)
Áfidos/fisiología , Inmunidad de la Planta/genética , Triticum/inmunología , Animales , Vías Biosintéticas/genética , Clorofila/genética , Clorofila/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Parásitos , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Triticum/genética , Triticum/parasitología
17.
Theor Appl Genet ; 133(8): 2343-2353, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32436021

RESUMEN

KEY MESSAGE: Two new Hessian fly resistance QTLs (H35 and H36) and tightly linked SNP markers were identified in a US hard winter wheat SD06165. Hessian fly (HF), Mayetiola destructor (Say), is one of the most destructive pests in wheat (Triticum aestivum L.) worldwide. Growing resistant cultivars is the most effective approach to minimize Hessian fly damage. To identify new quantitative trait loci (QTLs) for HF resistance, a recombinant inbred line population was developed by crossing HF resistant wheat line SD06165 to a susceptible line OK05312. The population was genotyped with 1709 single-nucleotide polymorphisms (SNPs) generated from genotyping-by-sequencing and phenotyped for HF resistance in greenhouses. Two novel QTLs for HF resistance were identified from SD06165. The major QTL, designated as H35, was closely linked to SNP marker SDOKSNP7679 on chromosome 3BS that explained 23.8% and 36.0% of the phenotypic variations; the minor QTL, designated as H36, was flanked by SNP markers SDOKSNP1618 and SDOKSNP8089 on chromosome 7AS and explained 8.5% and 13.1% of the phenotypic variation in the two experiments. Significant interaction was detected between the two QTLs. Seventeen SNPs that tightly link to H35 and eight SNPs that tightly link to H36 were converted to kompetitive allele specific polymerase chain reaction markers for selecting these QTLs in breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Animales , Mapeo Cromosómico , Dípteros , Ligamiento Genético , Marcadores Genéticos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/parasitología
18.
Phytopathology ; 110(2): 472-482, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31433275

RESUMEN

The coexistence of cereal cyst nematode (CCN) species Heterodera avenae and H. filipjevi, often involving multiple pathotypes, is a limiting factor for wheat production in China. Some of the known genes for resistance to CCN are not effective against both nematode species, hence complicating breeding efforts to develop CCN-resistant wheat cultivars. Here, we demonstrate that the CCN resistance in wheat cultivar Madsen to both Heterodera spp. is controlled by different genetic loci, both of which originated from Aegilops ventricosa. A new quantitative trait locus (QTL), QCre-ma7D, was identified and localized in a 3.77-Mb genomic region on chromosome arm 7DL, which confers resistance to H. filipjevi. QCre-ma2A on chromosome arm 2AS corresponds to CCN resistance gene Cre5 and confers resistance to H. avenae. This QTL is a new locus on chromosome arm 7DL and is designated Cre9. Three Kompetitive allele-specific PCR markers (BS00150072, BS00021745, and BS00154302) were developed for molecular marker-assisted selection of Cre9 and locally adapted wheat lines with resistance to both nematode species were developed. QCre-ma2A on chromosome arm 2AS corresponds to CCN resistance gene Cre5 and confers resistance to H. avenae. The identification of different loci underlying resistance to H. filipjevi and H. avenae and the development of adapted resistant entries will facilitate breeding of wheat cultivars that are resistant to these devastating nematodes in China.


Asunto(s)
Resistencia a la Enfermedad , Sitios de Carácter Cuantitativo , Triticum , Tylenchoidea , Aegilops/genética , Animales , China , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Triticum/parasitología , Tylenchoidea/fisiología
19.
J Appl Toxicol ; 40(10): 1342-1352, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32346895

RESUMEN

Pantoea agglomerans is a Gram-negative bacterium that is ubiquitous in the environment, colonizing animals, humans, and numerous plants, including cotton and wheat. A lipopolysaccharide-containing fermented wheat flour extract from P. agglomerans (Somacy-FP100) is proposed for use as a food ingredient for individuals seeking foods for healthy aging. Previously published genotoxicity studies with Somacy-FP100 reported its lack of genotoxicity in vitro, but a subchronic toxicity study has not yet been performed. Therefore, to demonstrate the safety of Somacy-FP100 for use as a food ingredient, a 90-day oral (gavage) toxicity study in rats was conducted. Male and female Han Wistar rats were administered vehicle (control) or Somacy-FP100 at 500, 1500, or 4500 mg/kg body weight/day at a dose volume of 10 mL/kg body weight, for at least 90 days. No test article-related adverse clinical signs or effects on body weight, food consumption, or clinical pathology were observed, and there were no macroscopic or microscopic findings related to the test article. Therefore, 4500 mg/kg body weight/day (the highest dose tested and highest feasible dose) was established as the no-observed-adverse-effect level. This absence of subchronic toxicity, in addition to the previously reported lack of genotoxicity, demonstrates the safety of Somacy-FP100 for use as a food ingredient.


Asunto(s)
Grano Comestible/parasitología , Infecciones por Enterobacteriaceae/etiología , Harina/toxicidad , Lipopolisacáridos/toxicidad , Pantoea/química , Extractos Vegetales/toxicidad , Triticum/parasitología
20.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172024

RESUMEN

Odorant binding proteins play a key role in the olfactory system and are involved in the odor perception and discrimination of insects. To investigate the potential physiological functions of SaveOBP9 in Sitobion avenae, fluorescence ligand binding experiments, molecular docking, RNA interference, and behavioral tests were performed. Fluorescence binding assay results showed that SaveOBP9 had broad and high (Ki < 10 µM) binding abilities with most of the wheat volatiles, but was more obvious at pH 7.4 than pH 5.0. The binding sites of SaveOBP9 to the volatiles were predicted well by three-dimensional docking structure modeling and molecular docking. Moreover, S. avenae showed a strong behavioral response with the four compounds of wheat. The reduction in mRNA transcript levels after the RNA interference significantly reduced the expression level of SaveOBP9 and induced the non-significant response of S. avenae to the tetradecane, octanal, decanal, and hexadecane. This study provides evidence that SaveOBP9 might be involved in the chemoreception of wheat volatile organic compounds and can successfully contribute in the integrated management programs of S. avenae.


Asunto(s)
Áfidos/metabolismo , Receptores Odorantes/metabolismo , Secuencia de Aminoácidos/genética , Animales , Áfidos/genética , Proteínas Portadoras/metabolismo , Células Quimiorreceptoras/metabolismo , Conducta Alimentaria , Simulación del Acoplamiento Molecular , Odorantes , Hojas de la Planta/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Alineación de Secuencia , Triticum/genética , Triticum/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA