Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Phytopathology ; 114(3): 630-640, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457135

RESUMEN

Bursaphelenchus xylophilus, the pine wood nematode (PWN), is the causal agent of pine wilt disease (PWD), which causes enormous economic loss annually. According to our previous research, fomepizole, as a selective inhibitor of PWN alcohol dehydrogenase (ADH), has the potential to be a preferable lead compound for developing novel nematicides. However, the underlying molecular mechanism is still unclear. The result of molecular docking showed that the stronger interactions between fomepizole and PWN ADH at the active site of ADH were attributed to hydrogen bonds. Low-dose fomepizole had a substantial negative impact on the egg hatchability, development, oviposition, and lifespan of PWN. Transcriptome analysis indicated that 2,124 upregulated genes and 490 downregulated genes in fomepizole-treated PWN were obtained. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes indicated that fomepizole could be involved in controlling PWN vitality mainly by regulating key signaling pathways, such as the ribosome, hippo signaling pathway, and lysosome. Remarkably, the results of RNA interference indicated that the downregulated serine/threonine-protein phosphatase gene (stpp) could reduce the egg hatchability, development, oviposition, and lifespan of PWN, which was closely similar to the consequences of nematodes with low-dose fomepizole treatment. In addition, the silencing of stpp resulted in weakness of PWN pathogenicity, which indicated that stpp could be a potential drug target to control PWN.


Asunto(s)
Pinus , Tylenchida , Animales , Virulencia , Transcriptoma , Fomepizol , Xylophilus , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Pinus/genética , Fosfoproteínas Fosfatasas/genética , Treonina/genética , Serina/genética , Tylenchida/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255917

RESUMEN

Rapid and reliable diagnostic methods for plant-parasitic nematodes are critical for facilitating the selection of effective control measures. A diagnostic recombinase polymerase amplification (RPA) assay for Aphelenchoides fragariae using a TwistAmp® Basic Kit (TwistDx, Cambridge, UK) and AmplifyRP® Acceler8® Discovery Kit (Agdia, Elkhart, IN, USA) combined with lateral flow dipsticks (LF) has been developed. In this study, a LF-RPA assay was designed that targets the ITS rRNA gene of A. fragariae. This assay enables the specific detection of A. fragariae from crude nematode extracts without a DNA extraction step, and from DNA extracts of plant tissues infected with this nematode species. The LF-RPA assay showed reliable detection within 18-25 min with a sensitivity of 0.03 nematode per reaction tube for crude nematode extracts or 0.3 nematode per reaction tube using plant DNA extracts from 0.1 g of fresh leaves. The LF-RPA assay was developed and validated with a wide range of nematode and plant samples. Aphelenchoides fragariae was identified from seed samples in California. The LF-RPA assay has great potential for nematode diagnostics in the laboratory with minimal available equipment.


Asunto(s)
Fragaria , Rabdítidos , Tylenchida , Animales , Recombinasas , Nucleotidiltransferasas , ADN de Plantas , Tylenchida/genética
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732123

RESUMEN

The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.


Asunto(s)
Escarabajos , Transcriptoma , Animales , Escarabajos/fisiología , Escarabajos/genética , Tylenchida/fisiología , Tylenchida/genética , Tylenchida/patogenicidad , Perfilación de la Expresión Génica/métodos , Larva , Interacciones Huésped-Parásitos/genética , Aptitud Genética
4.
Pestic Biochem Physiol ; 194: 105527, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532336

RESUMEN

Bursaphelenchus xylophilus (Pine wood nematode, PWN) has become a worldwide forest disease due to its rapid infection ability, high lethality and difficulty in control. The main means of countering B. xylophilus is currently chemical control, but nematicides can present problems such as environmental pollution and drug resistance. The development of novel environmentally-friendly nematicides has thus become a focus of recent research. In this study, BxUGT3 and BxUGT34, which might be related to detoxification, were investigated by comparing transcriptomic and WGCNA approaches. Three other genes with a similar expression pattern, BxUGT13, BxUGT14, and BxUGT16, were found by gene family analysis. Further bioassays and qPCR assays confirmed that these five genes showed significant changes in transcript levels upon exposure to α-pinene and carvone, demonstrating that they respond to exogenous nematicidal substances. Finally, RNAi and bioassays showed that B. xylophilus with silenced BxUGT16 had increased mortality in the face of α-pinene and carvone stress, suggesting that BxUGT16 plays an important role in detoxification. Taken together, this study used novel molecular research methods, explored the detoxification mechanism of B. xylophilus at a transcriptomic level, and revealed a molecular target for the development of novel biopesticides.


Asunto(s)
Transcriptoma , Tylenchida , Animales , Xylophilus , Antinematodos/farmacología , Tylenchida/genética , Enfermedades de las Plantas
5.
Pestic Biochem Physiol ; 190: 105334, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740342

RESUMEN

Bursaphelenchus xylophilus is the causative agent of pine wilt disease. It has caused devastating damage to ecosystems worldwide, owing to the characteristic of being widely spread and uncontrollable. However, the current methods of control are mainly based on pesticides, which can cause irreversible damage to the ecosystem. Therefore, the search for new drug targets and the development of environmentally friendly nematicides is especially valuable. In this study, three key genes of the xenobiotic detoxification pathways were cloned from B. xylophilus, which were subsequently subjected to bioinformatic analysis. The bioassay experiment was carried out to determine the concentration of matrine required for further tests. Subsequently, enzyme activity detection and three gene expression pattern analysis were performed on matrine treated nematodes. Finally, RNA interference was conducted to verify the functions carried out by the three genes in combating matrine. The results indicated that cytochrome P450 and glutathione S-transferase of B. xylophilus were activated by matrine, which induced high expression of BxCYP33C4, BxGST1, and BxGST3. After RNA interference of three genes of B. xylophilus, the sensitivity of B. xylophilus to matrine was increased and the survival rate of nematodes was reduced to various degrees in comparison to the control group. Overall, the results fully demonstrated that BxCYP33C4, BxGST1, and BxGST3 are valuable drug targets for B. xylophilus. Furthermore, the results suggested that matrine has value for development and exploitation in the prevention and treatment of B. xylophilus.


Asunto(s)
Ecosistema , Tylenchida , Animales , Matrinas , Xylophilus , Xenobióticos/toxicidad , Xenobióticos/metabolismo , Tylenchida/genética , Tylenchida/metabolismo , Enfermedades de las Plantas/prevención & control
6.
Pestic Biochem Physiol ; 194: 105511, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532327

RESUMEN

Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.


Asunto(s)
Escarabajos , Nematodos , Pinus , Tylenchida , Animales , Especies Reactivas de Oxígeno , Enfermedades de las Plantas , Estrés Oxidativo , Antinematodos/farmacología , Transducción de Señal , Reproducción , Tylenchida/genética , Defensinas
7.
Plant Dis ; 107(6): 1703-1713, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36383999

RESUMEN

The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes significant damage to pine trees and, thus, poses a serious threat to pine forests worldwide, particularly in China, Korea, and Japan. A fast, affordable, and ultrasensitive detection of B. xylophilus is urgently needed for disease diagnosis. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have reshaped molecular diagnosis, with high speed, precision, specificity, strength, efficiency, and versatility. Herein, we established two isothermal diagnostics methods based on CRISPR-based platforms (CRISPR/Cas12a and CRISPR/Cas13a) for B. xylophilus-specific detection via fluorescence or lateral-flow strip readout. The guide RNA and CRISPR RNA were designed to target the 5S ribosomal DNA intergenic spacer sequences region of B. xylophilus. Recombinase-aided amplification was used for preamplification whose reaction condition was 37°C for 15 min. The sensitivity of CRISPR/Cas12a could reach 94 copies/µl of plasmid DNA, or 2.37 copies/µl of purified genomic DNA (gDNA) within 45 min at 37°C, while the sensitivity of CRISPR/Cas13a was 1,000 times higher than that of CRISPR/Cas12a of plasmid DNA in 15 min or 100 times higher of purified gDNA at the minimum reaction time of 4 min via fluorescence measurement. The CRISPR/Cas12a assay enabled the detection of 0.01 PWNs per 100 mg of pine wood, 10 times higher than that of the CRISPR/Cas13a assay. This work enriches molecular detection approaches for B. xylophilus and provides huge potential for ultrasensitive and rapid methods to detect B. xylophilus in pine wood, facilitating point-of-sample diagnostic processing for pine wilt disease management.


Asunto(s)
Pinus , Tylenchida , Animales , Xylophilus , Sistemas CRISPR-Cas , Tylenchida/genética , ARN
8.
Plant Dis ; 107(11): 3344-3353, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37115564

RESUMEN

The stubby root nematode Paratrichodorus allius is an important plant-parasitic nematode species within the Trichodoridae family. It can directly harm the plants by feeding on the roots or indirectly by transmitting Tobacco rattle virus. These nematodes are mostly diagnosed either by traditional microscopic methods or a polymerase chain reaction (PCR)-based method. Droplet digital PCR (ddPCR) is a novel PCR technique which is sensitive and precise in quantifying DNA templates of the test samples. In this study, we developed a ddPCR assay to detect and quantify P. allius in soil. The specificity and sensitivity of the assay was first determined using P. allius nematode DNA or DNA from sterilized soil artificially inoculated with P. allius, and the assay was used to quantify P. allius populations in field soils. The assay did not detect nematodes other than P. allius, thus showing high specificity. It was able to detect P. allius equivalent to a 0.01 and 0.02 portion of a single nematode in soil DNA and nematode DNA extracts, respectively. Highly linear relationships between DNA copy numbers from ddPCR and serial dilutions of known concentrations were observed with DNA from P. allius nematodes (R2 = 0.9842) and from artificially infested soil (R2 = 0.9464). The P. allius populations from field soils determined by ddPCR were highly correlated with traditional microscopic counts (R2 = 0.7963). To our knowledge, this is the first report of applying ddPCR to detect and quantify stubby root nematode in soil. The results of this study support the potentiality of a ddPCR assay as a new research tool in diagnostics of plant-parasitic nematodes.


Asunto(s)
Nematodos , Tylenchida , Animales , Suelo/parasitología , Nematodos/genética , Reacción en Cadena de la Polimerasa/métodos , Plantas , Tylenchida/genética , ADN
9.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768136

RESUMEN

Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.


Asunto(s)
Pinus , Tylenchida , Animales , Especies Reactivas de Oxígeno , Xylophilus , Pinus/genética , Filogenia , Transcriptoma , Enfermedades de las Plantas/genética , Tylenchida/genética
10.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069165

RESUMEN

Plant parasitic nematodes are important phytopathogens that greatly affect the growth of agricultural and forestry plants. Scientists have conducted several studies to prevent and treat the diseases they cause. With the advent of the genomics era, the genome sequencing of plant parasitic nematodes has been considerably accelerated, and a large amount of data has been generated. This study developed the Plant Parasitic Nematodes Database (PPND), a platform to combine these data. The PPND contains genomic, transcriptomic, protein, and functional annotation data, allowing users to conduct BLAST searches and genome browser analyses and download bioinformatics data for in-depth research. PPND will be continuously updated, and new data will be integrated. PPND is anticipated to become a comprehensive genomics data platform for plant parasitic nematode research.


Asunto(s)
Nematodos , Parásitos , Tylenchida , Animales , Nematodos/genética , Genómica , Plantas/genética , Plantas/parasitología , Genoma , Tylenchida/genética , Parásitos/genética , Enfermedades de las Plantas/parasitología
11.
Phytopathology ; 112(4): 888-897, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35311527

RESUMEN

Pine wilt disease is a major forest disease worldwide, including in China, where it has severely damaged pine forest ecosystems, and the pathogen is pine wood nematode (Bursaphelenchus xylophilus). The thaumatin-like protein-1 gene (Bx-tlp-1) is a key gene associated with B. xylophilus pathogenicity, which is also responsive to α-pinene. In this study, an examination of Pinus massoniana seedlings infected by B. xylophilus revealed that monoterpene (sesquiterpene) levels peaked on days 15 and 27 (days 18 and 27). Meanwhile, P. massoniana Pm-tlp expression levels were high on days 3, 12, and 27, which were consistent with the expression of key enzymes genes in the terpene biosynthesis pathway. The functional similarity of B. xylophilus Bx-TLP-1 and P. massoniana Pm-TLP suggests Bx-TLP-1 and Pm-TLP may have similar roles in P. massoniana. There was also no secondary accumulation of terpenes in P. massoniana seedlings during B. xylophilus treated with dsRNA targeting Bx-tlp-1 (dsTLP1) infections, reflecting the decreased pathogenicity of B. xylophilus and the delayed disease progression in pine trees. And the results of micro-CT showed that the degree of cavitation for the trees inoculated with Bx-TLP-1 (0.3811 mm3) was greater than that for the trees inoculated with dsTLP1 PWNs (0.1204 mm3) on day 15 after inoculation. Results from this study indicated that B. xylophilus Bx-tlp-1 gene may induce the upregulated expression of related genes encoding enzymes in the terpene synthesis pathway of P. massoniana, resulting in the accumulation of terpenes, which also provided an insight to investigate the B. xylophilus pathogenicity in the future.


Asunto(s)
Pinus , Tylenchida , Animales , Ecosistema , Enfermedades de las Plantas , ARN Bicatenario , Plantones/genética , Tylenchida/genética , Xylophilus
12.
Pestic Biochem Physiol ; 181: 105019, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35082042

RESUMEN

Bursaphelenchus xylophilus is one of the most dangerous forest pathogens in the world, causing devastating pine forest deaths with considerable economic losses. In this study, we investigated the B. xylophilus RNA sequence responses of two different concentrations of levamisole hydrochloride (LH). We observed that body-wall muscle twitching, paralysis and, ultimately, death. 2.5 mg/ml and 3.5 mg/ml LH have toxicological effects on B. xylophilus, with mortality increasing significantly with concentration (p < 0.05). RNA sequencing, differential gene expression analysis, and cluster analysis were performed, and 336, 384, 6 genes with significant variance in expression were identified. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 12 intersecting genes revealed that these genes are mostly involved in metabolism of xenobiotics and have essential roles in drug sensitivity. Through the trend analysis of DEGs, it was divided into 8 modules, and the significant modules were selected to construct the co-expression network as the central genes of the drug metabolism-cytochrome P450 pathway (ko00982) and metabolism of xenobiotics by cytochrome P450 (ko00980). Eight highly related genes were identified, including cuticle collagen, cystathionine beta-synthase, endochitinase, pyruvate dehydrogenase E1 component subunit beta, aldehyde dehydrogenase, lipase, and zinc metalloproteinase. The expression levels of these genes were upregulated significantly at low concentrations and were significantly related to the resistance of B. xylophilus to LH. This study shows that B. xylophilus gene family expansions occurred in xenobiotic detoxification pathways through gene expression and potential horizontal correlated gene transfer with LH and helps to elucidate LH lethality and the evolutionary mechanisms underlying the adaptations of B. xylophilus to the environment. These results contributing to our understanding of B. xylophilus under LH and provide a data platform to providing a basis for its control.


Asunto(s)
Pinus , Tylenchida , Animales , Perfilación de la Expresión Génica , Levamisol , Enfermedades de las Plantas , Transcriptoma , Tylenchida/genética , Xylophilus
13.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499649

RESUMEN

Bursaphelenchus xylophilus is considered the most dangerous quarantine pest in China. It causes enormous economic and ecological losses in many countries from Asia and Europe. The glycoside hydrolase 45 gene family has been demonstrated in early studies to contribute to the cell wall degradation ability of B. xylophilus during its infection. However, the copy number variation (CNV) of the GH45 gene and its association with B. xylophilus pathogenicity were not fully elucidated. In this study, we found that the GH45 gene with two copies is the most predominant type among 259 B. xylophilus strains collected from China and Japan. Additionally, 18 strains are identified as GH45 genes with a single copy, and only two strains are verified to have three copies. Subsequent expression analysis and inoculation test suggest that the copy numbers of the GH45 gene are correlated with gene expression as well as the B. xylophilus pathogenicity. B. xylophilus strains with more copies of the GH45 gene usually exhibit more abundant expression and cause more severe wilt symptoms on pine trees. The aforementioned results indicated the potential regulatory effects of CNV in B. xylophilus and provided novel information to better understand the molecular pathogenesis of this devastating pest.


Asunto(s)
Pinus , Rabdítidos , Tylenchida , Animales , Tylenchida/genética , Variaciones en el Número de Copia de ADN , Glicósido Hidrolasas/genética , Enfermedades de las Plantas
14.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35742858

RESUMEN

Bursaphelenchus xylophilus is the most economically important species of migratory plant-parasitic nematodes (PPNs) and causes severe damage to forestry in China. The successful infection of B. xylophilus relies on the secretion of a repertoire of effector proteins. The effectors, which suppress the host pine immune response, are key to the facilitation of B. xylophilus parasitism. An exhaustive list of candidate effectors of B. xylophilus was predicted, but not all have been identified and characterized. Here, an effector, named BxSCD3, has been implicated in the suppression of host immunity. BxSCD3 could suppress pathogen-associated molecular patterns (PAMPs) PsXEG1- and INF1-triggered cell death when it was secreted into the intracellular space in Nicotiana benthamiana. BxSCD3 was highly up-regulated in the early infection stages of B. xylophilus. BxSCD3 does not affect B. xylophilus reproduction, either at the mycophagous stage or the phytophagous stage, but it contributes to the virulence of B. xylophilus. Moreover, BxSCD3 significantly influenced the relative expression levels of defense-related (PR) genes PtPR-3 and PtPR-6 in Pinus thunbergii in the early infection stage. These results suggest that BxSCD3 is an important toxic factor and plays a key role in the interaction between B. xylophilus and host pine.


Asunto(s)
Pinus , Rabdítidos , Tylenchida , Animales , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Tylenchida/genética , Virulencia/genética , Xylophilus
15.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499385

RESUMEN

The pinewood nematode, Bursaphelenchus xylophilus, has been determined as one of the world's top ten plant-parasitic nematodes. It causes pine wilt, a progressive disease that affects the economy and ecologically sustainable development in East Asia. B. xylophilus secretes pathogenic proteins into host plant tissues to promote infection. However, little is known about the interaction between B. xylophilus and pines. Previous studies reported transthyretin proteins in some species and their strong correlation with immune evasion, which has also been poorly studied in B. xylophilus. In this study, we cloned and functionally validated the B. xylophilus pathogenic protein BxTTR-52, containing a transthyretin domain. An in situ hybridization assay demonstrated that BxTTR-52 was expressed mainly in the esophageal glands of B. xylophilus. Confocal microscopy revealed that BxTTR-52-RFP localized to the nucleus, cytoplasm, and plasma membrane. BxTTR-52 recombinant proteins produced by Escherichia coli could be suppressed by hydrogen peroxide and antioxidant enzymes in pines. Moreover, silencing BxTTR-52 significantly attenuated the morbidity of Pinus thunbergii infected with B. xylophilus. It also suppressed the expression of pathogenesis-related genes in P. thunbergii. These results suggest that BxTTR-52 suppresses the plant immune response in the host pines and might contribute to the pathogenicity of B. xylophilus in the early infection stages.


Asunto(s)
Pinus , Rabdítidos , Tylenchida , Animales , Tylenchida/genética , Pinus/parasitología , Virulencia , Inmunidad Innata , Enfermedades de las Plantas/parasitología
16.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142347

RESUMEN

Peptidases are very important to parasites, which have central roles in parasite biology and pathogenesis. In this study, by comparative genome analysis, genome-wide peptidase diversities among plant-parasitic nematodes are estimated. We find that genes encoding cysteine peptidases in family C13 (legumain) are significantly abundant in pine wood nematodes Bursaphelenchus genomes, compared to those in other plant-parasitic nematodes. By phylogenetic analysis, a clade of B. xylophilus-specific legumain is identified. RT-qPCR detection shows that these genes are highly expressed at early stage during the nematode infection process. Utilizing transgene technology, cDNAs of three species-specific legumain were introduced into the Arabidopsis γvpe mutant. Functional complementation assay shows that these B. xylophilus legumains can fully complement the activity of Arabidopsis γVPE to mediate plant cell death triggered by the fungal toxin FB1. Secretory activities of these legumains are experimentally validated. By comparative transcriptome analysis, genes involved in plant cell death mediated by legumains are identified, which enrich in GO terms related to ubiquitin protein transferase activity in category molecular function, and response to stimuli in category biological process. Our results suggest that B. xylophilu-specific legumains have potential as effectors to be involved in nematode-plant interaction and can be related to host cell death.


Asunto(s)
Arabidopsis , Micotoxinas , Parásitos , Pinus , Rabdítidos , Tylenchida , Animales , Arabidopsis/genética , Cisteína/genética , Cisteína Endopeptidasas , Péptido Hidrolasas/genética , Filogenia , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Plantas/parasitología , Transferasas/genética , Tylenchida/genética , Ubiquitinas/genética , Virulencia , Xylophilus
17.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054970

RESUMEN

The voltage-gated calcium channel (VGCC) ß subunit (Cavß) protein is a kind of cytosolic auxiliary subunit that plays an important role in regulating the surface expression and gating characteristics of high-voltage-activated (HVA) calcium channels. Ditylenchus destructor is an important plant-parasitic nematode. In the present study, the putative Cavß subunit gene of D. destructor, namely, DdCavß, was subjected to molecular characterization. In situ hybridization assays showed that DdCavß was expressed in all nematode tissues. Transcriptional analyses showed that DdCavß was expressed during each developmental stage of D. destructor, and the highest expression level was recorded in the third-stage juveniles. The crucial role of DdCavß was verified by dsRNA soaking-mediated RNA interference (RNAi). Silencing of DdCavß or HVA Cavα1 alone and co-silencing of the DdCavß and HVA Cavα1 genes resulted in defective locomotion, stylet thrusting, chemotaxis, protein secretion and reproduction in D. destructor. Co-silencing of the HVA Cavα1 and Cavß subunits showed stronger interference effects than single-gene silencing. This study provides insights for further study of VGCCs in plant-parasitic nematodes.


Asunto(s)
Canales de Calcio Tipo L/genética , Silenciador del Gen , Fenotipo , Subunidades de Proteína/genética , ARN Bicatenario/genética , Tylenchida/fisiología , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo L/química , Quimiotaxis/genética , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Locomoción/genética , Modelos Moleculares , Biosíntesis de Proteínas , Conformación Proteica , Subunidades de Proteína/química , Interferencia de ARN , Reproducción/genética , Relación Estructura-Actividad , Tylenchida/genética , Tylenchida/crecimiento & desarrollo
18.
BMC Genomics ; 22(1): 394, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044778

RESUMEN

BACKGROUND: The pine wood nematode Bursaphelenchus xylophilus is a destructive pest of Pinus trees worldwide and lacks effective control measures. Screening for nematotoxic proteins has been undertaken to develop new strategies for nematode control. RESULTS: The results of the present study provided initial insights into the responses of B. xylophilus exposed to a nematotoxic cytolytic-like protein (CytCo) based on transcriptome profiling. A large set of differentially expressed genes (DEGs = 1265) was found to be related to nematode development, reproduction, metabolism, motion, and immune system. In response to the toxic protein, B. xylophilus upregulated DEGs encoding cuticle collagens, transporters, and cytochrome P450. In addition, many DEGs related to cell death, lipid metabolism, major sperm proteins, proteinases/peptidases, phosphatases, kinases, virulence factors, and transthyretin-like proteins were downregulated. Gene Ontology enrichment analysis showed that the CytCo treatment substantially affected DEGs involved in muscle contraction, lipid localization, and the mitogen-activated protein kinase cascade. The pathway richness of the Kyoto Encyclopedia of Genes and Genomes showed that the DEGs were concentrated in lysosomes and involved in fatty acid degradation. Weighted co-expression network analysis indicated that the hub genes affected by CytCo were associated with the nematode cuticular collagen. CONCLUSIONS: These results showed that CytCo toxin interferes with gene expression to exert multiple nematotoxic effects, thereby providing insights into its potential use in pine wood nematode control.


Asunto(s)
Pinus , Rabdítidos , Tylenchida , Animales , Perfilación de la Expresión Génica , Pinus/genética , Enfermedades de las Plantas , Transcriptoma , Tylenchida/genética , Xylophilus
19.
RNA Biol ; 18(10): 1424-1433, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33218290

RESUMEN

RNA interference (RNAi) is a powerful tool for gene functional analysis of plant-parasitic nematodes (PPNs). RNAi involving soaking in a dsRNA solution and in planta methods is commonly applied in the study of gene function in PPNs. However, certain problems restrict the application of these methods. Therefore, more convenient and effective RNAi methods need to be established for different PPNs according to their biological characteristics. In this study, the fatty acid and retinoid binding protein genes (Ab-far-1, Ab-far-4, and combinatorial Ab-far-1 and Ab-far-4) of the rice white tip nematode (RWTN), Aphelenchoides besseyi, were used as target genes to construct a fungal RNAi vector, and the Ab-far-n dsRNA transgenic Botrytis cinerea (ARTBn) were generated using Agrobacterium-mediated transformation technology. After RWTN feeding on ARTBn, the expression of Ab-far-1 and Ab-far-4 in the nematodes was efficiently silenced, and the reproduction and pathogenicity of the nematodes were clearly inhibited. The Ab-far-1 and Ab-far-4 co-RNAi effects were better than the effects when each gene was individually targeted with RNAi. Additionally, the RNAi induced when RWTNs fed on ARTB1 were persistent and heritable. Thus, a new method of fungus-mediated RNAi was established for fungivorous PPNs and was verified as effective and applicable to the study of nematode gene function. This technique will remove the technological bottlenecks and provide a new method to studying the multiple genes with polygene co-RNAi in fungivorous PPNs. This study also provides a theoretical basis and new thought for further study of the gene function in PPNs.Abbreviations: FAR(Fatty acid and retinol-binding proteins); RWTN (The rice white tip nematode, Aphelenchoides besseyi); Ab-far-n (Fatty acid and retinol binding protein gene of A. besseyi); ARTB1 (Ab-far-1 hpRNA transgenic Botrytis cinerea); ARTB4 (Ab-far-4 hpRNA transgenic Botrytis cinerea); ARTB1/4 (combinatorial Ab-far-1 and Ab-far-4 hpRNA transgenic B. cinerea); EVTB (Empty vector transgenic B. cinerea); GRTB (eGFP hpRNA transgenic B. cinerea); WTB (Wild-type B. cinerea).


Asunto(s)
Botrytis/crecimiento & desarrollo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión al Retinol/genética , Tylenchida/crecimiento & desarrollo , Animales , Botrytis/genética , Silenciador del Gen , Proteínas del Helminto/genética , Oryza/parasitología , Interferencia de ARN , ARN Bicatenario/genética , Transfección , Tylenchida/genética , Tylenchida/metabolismo
20.
PLoS Genet ; 14(4): e1007310, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29641602

RESUMEN

Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.


Asunto(s)
Productos Agrícolas/parasitología , Genes Esenciales , Genes de Helminto , Glutatión Sintasa/genética , Tylenchida/genética , Animales , Regulación Enzimológica de la Expresión Génica , Interacciones Huésped-Parásitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA