Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(18): 4637-4642, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666272

RESUMEN

Asn-linked oligosaccharides are extensively modified during transit through the secretory pathway, first by trimming of the nascent glycan chains and subsequently by initiating and extending multiple oligosaccharide branches from the trimannosyl glycan core. Trimming and branching pathway steps are highly ordered and hierarchal based on the precise substrate specificities of the individual biosynthetic enzymes. A key committed step in the synthesis of complex-type glycans is catalyzed by N-acetylglucosaminyltransferase II (MGAT2), an enzyme that generates the second GlcNAcß1,2- branch from the trimannosyl glycan core using UDP-GlcNAc as the sugar donor. We determined the structure of human MGAT2 as a Mn2+-UDP donor analog complex and as a GlcNAcMan3GlcNAc2-Asn acceptor complex to reveal the structural basis for substrate recognition and catalysis. The enzyme exhibits a GT-A Rossmann-like fold that employs conserved divalent cation-dependent substrate interactions with the UDP-GlcNAc donor. MGAT2 interactions with the extended glycan acceptor are distinct from other related glycosyltransferases. These interactions are composed of a catalytic subsite that binds the Man-α1,6- monosaccharide acceptor and a distal exosite pocket that binds the GlcNAc-ß1,2Man-α1,3Manß- substrate "recognition arm." Recognition arm interactions are similar to the enzyme-substrate interactions for Golgi α-mannosidase II, a glycoside hydrolase that acts just before MGAT2 in the Asn-linked glycan biosynthetic pathway. These data suggest that substrate binding by MGAT2 employs both conserved and convergent catalytic subsite modules to provide substrate selectivity and catalysis. More broadly, the MGAT2 active-site architecture demonstrates how glycosyltransferases create complementary modular templates for regiospecific extension of glycan structures in mammalian cells.


Asunto(s)
N-Acetilglucosaminiltransferasas/química , Pliegue de Proteína , Uridina Difosfato N-Acetilglucosamina/química , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Dominios Proteicos , Uridina Difosfato N-Acetilglucosamina/metabolismo
2.
J Am Chem Soc ; 142(7): 3506-3512, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986016

RESUMEN

A highly efficient di-C-glycosyltransferase GgCGT was discovered from the medicinal plant Glycyrrhiza glabra. GgCGT catalyzes a two-step di-C-glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di-C-glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono-C-glycosylation. GgCGT is the first di-C-glycosyltransferase with a crystal structure, and the first C-glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize C-glycosides with medicinal potential.


Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Glycyrrhiza/enzimología , Clonación Molecular , Cristalografía por Rayos X , Glicosilación , Glicosiltransferasas/genética , Glycyrrhiza/genética , Ligandos , Modelos Moleculares , Floretina/química , Floretina/metabolismo , Especificidad por Sustrato , Transcriptoma , Uridina Difosfato Galactosa/química , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Uridina Difosfato Xilosa/química , Uridina Difosfato Xilosa/metabolismo
3.
Biochemistry ; 57(24): 3387-3401, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29684272

RESUMEN

The biosynthetic pathway of peptidoglycan is essential for Mycobacterium tuberculosis. We report here the acetyltransferase substrate specificity and catalytic mechanism of the bifunctional N-acetyltransferase/uridylyltransferase from M. tuberculosis (GlmU). This enzyme is responsible for the final two steps of the synthesis of UDP- N-acetylglucosamine, which is an essential precursor of peptidoglycan, from glucosamine 1-phosphate, acetyl-coenzyme A, and uridine 5'-triphosphate. GlmU utilizes ternary complex formation to transfer an acetyl from acetyl-coenzyme A to glucosamine 1-phosphate to form N-acetylglucosamine 1-phosphate. Steady-state kinetic studies and equilibrium binding experiments indicate that GlmU follows a steady-state ordered kinetic mechanism, with acetyl-coenzyme A binding first, which triggers a conformational change in GlmU, followed by glucosamine 1-phosphate binding. Coenzyme A is the last product to dissociate. Chemistry is partially rate-limiting as indicated by pH-rate studies and solvent kinetic isotope effects. A novel crystal structure of a mimic of the Michaelis complex, with glucose 1-phosphate and acetyl-coenzyme A, helps us to propose the residues involved in deprotonation of glucosamine 1-phosphate and the loop movement that likely generates the active site required for glucosamine 1-phosphate to bind. Together, these results pave the way for the rational discovery of improved inhibitors against M. tuberculosis GlmU, some of which might become candidates for antibiotic discovery programs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biocatálisis , Complejos Multienzimáticos/metabolismo , Uridina Difosfato N-Acetilglucosamina/biosíntesis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Cloruro de Magnesio/química , Cloruro de Magnesio/farmacología , Estructura Molecular , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Mycobacterium tuberculosis/enzimología , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/química
4.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 397-406, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29203374

RESUMEN

The biosynthesis of UDP-N-acetylmuramic acid (UDP-MurNAc) by reduction of UDP-N-acetylglucosamine-enolpyruvate (UDP-GlcNAc-EP) in an NADPH and FAD-dependent reaction in bacteria is one of the key steps in peptidoglycan biosynthesis catalyzed by UDP-N-acetylglucosamine-enolpyruvate reductase (MurB). Here, we present the crystal structure of Mycobacterium tuberculosis MurB (MtbMurB) with FAD as the prosthetic group at 2.0Å resolution. There are six molecules in asymmetric unit in the form of dimers. Each protomer can be subdivided into three domains and the prosthetic group, FAD is bound in the active site between domain I and domain II. Comparison of MtbMurB structure with the structures of the Escherichia coli MurB (in complex with UDP-GlcNAc-EP) and Pseudomonas aeruginosa MurB (in complex with NADPH) showed all three structures share similar domain architecture and residues in the active site. The nicotinamide and the enol pyruvyl moieties are well aligned upon superimposition, both positioned in suitable position for hydride transfer to and from FAD. The comparison studies and MD simulations demonstrate that the two lobes of domain-III become more flexible. The substrates (NADPH and UDP-GlcNAc-EP) binding responsible for open conformation of MurB, suggesting that NADPH and UDP-GlcNAc-EP interactions are conformationally stable. Our findings provide a detail mechanism about the closed to open state by binding of NADPH and UDP-GlcNAc-EP induces the conformational changes of MurB structure that may trigger the MurB catalytic reaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/enzimología , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Mycobacterium tuberculosis/genética , NADP/química , NADP/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo
5.
Biochem Biophys Res Commun ; 478(3): 1223-9, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27545601

RESUMEN

The first step of lipid A biosynthesis in Escherichia coli (E. coli) is catalyzed by LpxA (EcLpxA), an acyltransferase selective for UDP-N-acetylglucosamine (UDP-GlcNAc) and R-3-hydroxymyristoyl-acyl carrier protein (3-OH-C14-ACP), and is an essential step in majority of Gram-negative bacteria. Since the majority of lipid A species isolated from F. novicida contains 3-OH-C16 or 3-OH-C18 at its C3 and C3' positions, FnLpxA was thought to be selective for longer acyl chain (3-OH-C16 and 3-OH-C18) over short acyl chain (3-OH-C14, 3-OH-C12, and 3-OH-C10). Here we demonstrate that Francisella novicida (F. novicida) lpxA functionally complements an E. coli lpxA knockout mutant and efficiently transfers 3-OH-C14 as well as 3-OH-C16 in E. coli. Our results implicate that the acyl chain length of lipid A is determined by several factors including acyl chain selectivity of LpxA and downstream enzymes, as well as the composition of the acyl-ACP pool in vivo. We also report the crystal structure of F. novicida LpxA (FnLpxA) at 2.06 Å. The N-terminal parallel beta-helix (LßH) and C-terminal alpha-helical domain are similar to other reported structures of LpxAs. However, our structure indicates that the supposed ruler residues for hydrocarbon length, 171L in one monomer and 168H in the adjacent monomer in a functional trimer of FnLpxA, are located just 3.8 Å apart that renders not enough space for binding of 3-OH-C12 or longer acyl chains. This implicates that FnLpxA may have an alternative hydrophobic pocket, or the acyl chain may bend while binding to FnLpxA. In addition, the FnLpxA structure suggests a potential inhibitor binding site for development of antibiotics.


Asunto(s)
Aciltransferasas/química , Proteínas Bacterianas/química , Francisella/enzimología , Uridina Difosfato N-Acetilglucosamina/química , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Lípido A/química , Modelos Moleculares , Uridina Difosfato N-Acetilglucosamina/metabolismo
6.
J Biol Chem ; 288(47): 34073-34080, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24108127

RESUMEN

The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.


Asunto(s)
Amidohidrolasas/química , Escherichia coli/enzimología , Ácidos Mirísticos/química , Protones , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Amidohidrolasas/metabolismo , Cristalografía por Rayos X , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Ácidos Mirísticos/metabolismo , Estructura Terciaria de Proteína , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
7.
Proteins ; 82(7): 1519-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24470206

RESUMEN

Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) 2-epimerase catalyzes the interconversion of UDP-GlcNAc to UDP-N-acetylmannosamine (UDP-ManNAc), which is used in the biosynthesis of cell surface polysaccharides in bacteria. Biochemical experiments have demonstrated that mutation of this enzyme causes changes in cell morphology and the thermoresistance of the cell wall. Here, we present the crystal structures of Methanocaldococcus jannaschii UDP-GlcNAc 2-epimerase in open and closed conformations. A comparison of these crystal structures shows that upon UDP and UDP-GlcNAc binding, the enzyme undergoes conformational changes involving a rigid-body movement of the C-terminal domain. We also present the crystal structure of Bacillus subtilis UDP-GlcNAc 2-epimerase in the closed conformation in the presence of UDP and UDP-GlcNAc. Although a structural overlay of these two closed-form structures reveals that the substrate-binding site is evolutionarily conserved, some areas of the allosteric site are distinct between the archaeal and bacterial UDP-GlcNAc 2-epimerases. This is the first report on the crystal structure of archaeal UDP-GlcNAc 2-epimerase, and our results clearly demonstrate the changes between the open and closed conformations of this enzyme.


Asunto(s)
Proteínas Arqueales , Methanocaldococcus/enzimología , Uridina Difosfato N-Acetilglucosamina , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Isomerismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
8.
PLoS Biol ; 9(3): e1001033, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21445328

RESUMEN

Most genomes of bacteria contain toxin-antitoxin (TA) systems. These gene systems encode a toxic protein and its cognate antitoxin. Upon antitoxin degradation, the toxin induces cell stasis or death. TA systems have been linked with numerous functions, including growth modulation, genome maintenance, and stress response. Members of the epsilon/zeta TA family are found throughout the genomes of pathogenic bacteria and were shown not only to stabilize resistance plasmids but also to promote virulence. The broad distribution of epsilon/zeta systems implies that zeta toxins utilize a ubiquitous bacteriotoxic mechanism. However, whereas all other TA families known to date poison macromolecules involved in translation or replication, the target of zeta toxins remained inscrutable. We used in vivo techniques such as microscropy and permeability assays to show that pneumococcal zeta toxin PezT impairs cell wall synthesis and triggers autolysis in Escherichia coli. Subsequently, we demonstrated in vitro that zeta toxins in general phosphorylate the ubiquitous peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) and that this activity is counteracted by binding of antitoxin. After identification of the product we verified the kinase activity in vivo by analyzing metabolite extracts of cells poisoned by PezT using high pressure liquid chromatograpy (HPLC). We further show that phosphorylated UNAG inhibitis MurA, the enzyme catalyzing the initial step in bacterial peptidoglycan biosynthesis. Additionally, we provide what is to our knowledge the first crystal structure of a zeta toxin bound to its substrate. We show that zeta toxins are novel kinases that poison bacteria through global inhibition of peptidoglycan synthesis. This provides a fundamental understanding of how epsilon/zeta TA systems stabilize mobile genetic elements. Additionally, our results imply a mechanism that connects activity of zeta toxin PezT to virulence of pneumococcal infections. Finally, we discuss how phosphorylated UNAG likely poisons additional pathways of bacterial cell wall synthesis, making it an attractive lead compound for development of new antibiotics.


Asunto(s)
Antitoxinas/farmacología , Apoptosis/efectos de los fármacos , Bacterias/citología , Bacterias/metabolismo , Toxinas Bacterianas/toxicidad , Peptidoglicano/biosíntesis , Bacterias/enzimología , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Bacteriólisis/efectos de los fármacos , División Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Modelos Biológicos , Fenotipo , Fosforilación/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Uridina Difosfato N-Acetilglucosamina/química
9.
J Biol Chem ; 287(10): 7203-12, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22235128

RESUMEN

The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (∼65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.


Asunto(s)
Proteínas Bacterianas/química , Glicosiltransferasas/química , Pasteurella multocida/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Pasteurella multocida/genética , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/genética , Uridina Difosfato Ácido Glucurónico/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-22505403

RESUMEN

The development of new antibiotics is necessitated by the rapid development of resistance to current therapies. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), which catalyzes the first committed step of bacterial peptidoglycan biosynthesis, is a prime candidate for therapeutic intervention. MurA is the target of the antibiotic fosfomycin, a natural product produced by Streptomyces. Despite possessing a high degree of sequence conservation with MurA enzymes from fosfomycin-susceptible organisms, recent microbiological studies suggest that MurA from Vibrio fischeri (VfiMurA) may confer fosfomycin resistance via a mechanism that is not yet understood. The crystal structure of VfiMurA in a ternary complex with the substrate UDP-N-acetylglucosamine (UNAG) and fosfomycin has been solved to a resolution of 1.93 Å. Fosfomycin is known to inhibit MurA by covalently binding to a highly conserved cysteine in the active site of the enzyme. A comparison of the title structure with the structure of fosfomycin-susceptible Haemophilus influenzae MurA (PDB entry 2rl2) revealed strikingly similar conformations of the mobile substrate-binding loop and clear electron density for a fosfomycin-cysteine adduct. Based on these results, there are no distinguishing sequence/structural features in VfiMurA that would translate to a diminished sensitivity to fosfomycin. However, VfiMurA is a robust crystallizer and shares high sequence identity with many clinically relevant bacterial pathogens. Thus, it would serve as an ideal system for use in the structure-guided optimization of new antibacterial agents.


Asunto(s)
Aliivibrio fischeri/enzimología , Transferasas Alquil y Aril/química , Fosfomicina/química , Dominios y Motivos de Interacción de Proteínas , Uridina Difosfato N-Acetilglucosamina/química , Transferasas Alquil y Aril/metabolismo , Fosfomicina/metabolismo , Modelos Moleculares , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/metabolismo
11.
NMR Biomed ; 24(1): 68-79, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20669171

RESUMEN

The glycosylation process, through the addition of carbohydrates, is a major post-translational modification of proteins and glycolipids. Proteins may be glycosylated in either the secretory pathway leading to N-linked or O-linked glycoproteins or as nucleocytoplasmic glycosylation that targets only single proteins involving a single ß-linked N-acetylglucosamine. In both cases, the key precursors are the uridine diphospho-N-acetylhexosamines synthesised by the hexosamine biosynthetic pathway. Furthermore, uridine diphospho-N-acetylglucosamine participates in the biosynthesis of sialic acid. In this work, we propose MRS for the detection of uridine diphospho-N-acetylhexosamines visible in high-resolution MR spectra of intact cells from different human tumours. Signals from the nucleotide and amino sugar moieties, including amide signals observed for the first time in whole cells, are assigned, also taking advantage of spectral changes that follow cell treatment with ammonium chloride. Finally, parallel changes in uridine diphospho-N-acetylhexosamines and glutamine pools, observed after pH changes induced by ammonium chloride in the different tumour cell lines, may provide more details on the glycosylation processes.


Asunto(s)
Vías Biosintéticas , Glicósidos/análisis , Neoplasias/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Vías Biosintéticas/efectos de los fármacos , Línea Celular Tumoral , Glicosilación/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Protones , Compuestos de Amonio Cuaternario/farmacología , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
12.
Bioorg Med Chem Lett ; 21(4): 1199-201, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21273069

RESUMEN

6''-Azido-6''-deoxy-UDP-N-acetylglucosamine (UDP-6Az-GlcNAc) is a potential alternate substrate for N-acetylglucosaminyltransferases. This compound could be used to generate various glycoconjugates bearing an azide functionality that could in turn be subjected to further modification using Staudinger ligation or Huisgen cycloaddition. UDP-6Az-GlcNAc is synthesized from α-benzyl-N-acetylglucosaminoside in seven-steps with an overall yield of 6%. It is demonstrated to serve as a substrate donor for the glycosyl transfer reaction catalyzed by the human UDP-GlcNAc:polypeptidyltransferase (OGT) to the acceptor protein nucleoporin 62 (nup62).


Asunto(s)
N-Acetilglucosaminiltransferasas/química , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Azidas/síntesis química , Azidas/química , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/síntesis química , Uridina Difosfato N-Acetilglucosamina/química
13.
J Org Chem ; 75(10): 3492-4, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20384302

RESUMEN

2-ketoGlc, which is the C(2)-carbon isostere of GlcNAc, is a novel GlcNAc analogue with a ketone group. The corresponding glycosyltransferase donor substrate, UDP-2-ketoGlc, is necessary for synthesizing 2-ketoGlc-containing molecules and is thus highly important for metabolic polysaccharide remodeling and engineering. We report here the first chemoenzymatic synthesis of UDP-2-ketoGlc using our two-enzyme (NahK and GlmU) system in vitro.


Asunto(s)
Nucleotidiltransferasas/metabolismo , Fosfotransferasas/metabolismo , Uridina Difosfato Glucosa/análogos & derivados , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Biocatálisis , Estructura Molecular , Nucleotidiltransferasas/química , Fosfotransferasas/química , Estereoisomerismo , Uridina Difosfato Glucosa/química , Uridina Difosfato N-Acetilglucosamina/análogos & derivados
14.
Structure ; 16(6): 965-75, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18547528

RESUMEN

The solution structure of Alg13, the glycosyl donor-binding domain of an important bipartite glycosyltransferase in the yeast Saccharomyces cerevisiae, is presented. This glycosyltransferase is unusual in that it is active only in the presence of a binding partner, Alg14. Alg13 is found to adopt a unique topology among glycosyltransferases. Rather than the conventional Rossmann fold found in all GT-B enzymes, the N-terminal half of the protein is a Rossmann-like fold with a mixed parallel and antiparallel beta sheet. The Rossmann fold of the C-terminal half of Alg13 is conserved. However, although conventional GT-B enzymes usually possess three helices at the C terminus, only two helices are present in Alg13. Titration of Alg13 with both UDP-GlcNAc, the native glycosyl donor, and a paramagnetic mimic, UDP-TEMPO, shows that the interaction of Alg13 with the sugar donor is primarily through the residues in the C-terminal half of the protein.


Asunto(s)
N-Acetilglucosaminiltransferasas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Óxidos N-Cíclicos/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Uridina Difosfato/análogos & derivados , Uridina Difosfato/química , Uridina Difosfato N-Acetilglucosamina/química
15.
Carbohydr Res ; 495: 108071, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32634644

RESUMEN

UDP-sugar analogs are useful for the study of glycosyltransferases and the production of unnatural glycans. The preparation of five UDP-GlcNAc derivatives is reported with 6-deoxy, 6-azido, 6-amino, 6-mercapto, or 6-fluoro substitutions. A concise chemoenzymatic synthesis was developed using the kinase NahK (B. longum JCM1217) and the uridyl transferase GlmU (E. coli K12).


Asunto(s)
Uridina Difosfato N-Acetilglucosamina/síntesis química , Conformación de Carbohidratos , Uridina Difosfato N-Acetilglucosamina/química
16.
Nat Commun ; 11(1): 687, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019926

RESUMEN

Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies.


Asunto(s)
Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hexosaminas/metabolismo , Retroalimentación Fisiológica , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Glicosilación , Hexosaminas/química , Humanos , Ligandos , Conformación Proteica , Proteostasis , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
17.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 557-567, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135674

RESUMEN

Bacterial nonhydrolyzing UDP-N-acetylglucosamine 2-epimerases catalyze the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). UDP-ManNAc is an important intermediate in the biosynthesis of certain cell-surface polysaccharides, including those in some pathogenic bacteria, such as Neisseria meningitidis and Streptococcus pneumoniae. Many of these epimerases are allosterically regulated by UDP-GlcNAc, which binds adjacent to the active site and is required to initiate UDP-ManNAc epimerization. Here, two crystal structures of UDP-N-acetylglucosamine 2-epimerase from Neisseria meningitidis serogroup A (NmSacA) are presented. One crystal structure is of the substrate-free enzyme, while the other structure contains UDP-GlcNAc substrate bound to the active site. Both structures form dimers as seen in similar epimerases, and substrate binding to the active site induces a large conformational change in which two Rossmann-like domains clamp down on the substrate. Unlike other epimerases, NmSacA does not require UDP-GlcNAc to instigate the epimerization of UDP-ManNAc, although UDP-GlcNAc was found to enhance the rate of epimerization. In spite of the conservation of residues involved in binding the allosteric UDP-GlcNAc observed in similar UDP-GlcNAc 2-epimerases, the structures presented here do not contain UDP-GlcNAc bound in the allosteric site. These structural results provide additional insight into the mechanism and regulation of this critical enzyme and improve the structural understanding of the ability of NmSacA to epimerize modified substrates.


Asunto(s)
Neisseria meningitidis Serogrupo A/enzimología , Sitio Alostérico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Conformación Proteica , Sodio/química , Sodio/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo
18.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 7): 314-319, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627747

RESUMEN

Mycobacterium tuberculosis possesses the ability to undergo physiological adaptations in order to persist during the prolonged course of infection despite the active immune response of the host and in order to overcome multiple environmental changes. Previous studies have proposed that M. tuberculosis CuvA (Rv1422; MtCuvA) might play a critical role in the adaptation of the bacterium to environmental changes, such as nutrient utilization and alteration of the growth rate. However, the detailed function of MtCuvA still remains unclear owing to a lack of structural information. To better understand its role in host adaptation, MtCuvA was purified to homogeneity and was crystallized for the first time using the hanging-drop vapor-diffusion method. The crystal of MtCuvA diffracted to a resolution of 2.1 Šand belonged to the orthorhombic space group P212121, with unit-cell parameters a = 47.27, b = 170.93, c = 178.10 Å. The calculated Matthews coefficient (VM) was 2.4 Å3 Da-1, with a solvent content of 48.02%, and thus four molecules appeared to be present in the asymmetric unit. Moreover, it is reported that MtCuvA can bind to the cell-wall precursor components uridine diphosphate (UDP)-glucose and UDP-N-acetylglucosamine.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/química , Secuencia de Aminoácidos , Escherichia coli , Ligandos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Unión Proteica , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Virulencia/genética , Difracción de Rayos X
19.
Biomolecules ; 10(2)2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050706

RESUMEN

Multidrug resistance in Pseudomonas aeruginosa is a noticeable and ongoing major obstacle for inhibitor design. In P. aeruginosa, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) acetyltransferase (PaLpxA) is an essential enzyme of lipid A biosynthesis and an attractive drug target. PaLpxA is a homotrimer, and the binding pocket for its substrate, UDP-GlcNAc, is positioned between the monomer A-monomer B interface. The uracil moiety binds at one monomer A, the GlcNAc moiety binds at another monomer B, and a diphosphate form bonds with both monomers. The catalytic residues are conserved and display a similar catalytic mechanism across orthologs, but some distinctions exist between pocket sizes, residue differences, substrate positioning and specificity. The analysis of diversified pockets, volumes, and ligand positions was determined between orthologues that could aid in selective inhibitor development. Thenceforth, a complex-based pharmacophore model was generated and subjected to virtual screening to identify compounds with similar pharmacophoric properties. Docking and general Born-volume integral (GBVI) studies demonstrated 10 best lead compounds with selective inhibition properties with essential residues in the pocket. For biological access, these scaffolds complied with the Lipinski rule, no toxicity and drug likeness properties, and were considered as lead compounds. Hence, these scaffolds could be helpful for the development of potential selective PaLpxA inhibitors.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Aciltransferasas/metabolismo , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Especificidad por Sustrato/genética , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
20.
Int J Biol Macromol ; 147: 170-176, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31923511

RESUMEN

Bacterial UDP-N-acetyl-d-glucosamine:heparosan alpha-1, 4-N-acetyl-d-glucosaminyltransferases (KfiAs) are in high demand for the development of animal-free heparin (HP) production. Until now, EcKfiA from Escherichia coli O10:K5:H4 was the sole identified member of this family. The lack of known members has limited research into molecular structure and catalytic mechanism of the KfiA superfamily, and restricted its application in enzymatic glycan synthesis. Herein, we report the identification and characterization of Gallibacterium anatis GaKfiA, doubling the number of known members of the KfiA family. GaKfiA is a monofunctional enzyme that transfers N-acetyl-d-glucosamine (GlcNAc) residues from their nucleotide forms to the nonreducing ends of saccharide chains structurally equivalent to the backbone of HP. The catalytic efficiency of GaKfiA is lower than that of EcKfiA. However, a single mutation of GaKfiA, N56D, resulted in a drastic increase in kcat/Km compared with wild-type GaKfiA. These data once again indicate the key role of a complete DXD motif for the catalytic efficiency of glycosyltransferases. This study deepens understanding of the mechanism of KfiA, and will assist in research into animal-free HP production.


Asunto(s)
Disacáridos/metabolismo , Glicosiltransferasas/metabolismo , Pasteurellaceae/enzimología , Uridina Difosfato N-Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Escherichia coli/enzimología , Glicosiltransferasas/química , Cinética , Proteínas Mutantes/metabolismo , Análisis de Secuencia de Proteína , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA