Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722096

RESUMEN

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Vasos Linfáticos , Proteínas Supresoras de Tumor , Proteínas de Pez Cebra , Pez Cebra , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Pez Cebra/genética , Pez Cebra/embriología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Elementos de Facilitación Genéticos/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Endoteliales/metabolismo , Linfangiogénesis/genética , Sistemas CRISPR-Cas/genética , Regiones Promotoras Genéticas/genética , Ratones
2.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742432

RESUMEN

Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.


Asunto(s)
Angiopoyetina 1 , Linfangiogénesis , Vasos Linfáticos , Receptor TIE-1 , Transducción de Señal , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Pez Cebra/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriología , Angiopoyetina 1/metabolismo , Angiopoyetina 1/genética , Receptor TIE-1/metabolismo , Receptor TIE-1/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Linfangiogénesis/genética , Movimiento Celular , Células Endoteliales/metabolismo , Unión Proteica , Proliferación Celular , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Mutación/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Regulación del Desarrollo de la Expresión Génica
3.
Genes Dev ; 31(16): 1615-1634, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947496

RESUMEN

Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.


Asunto(s)
Linfangiogénesis , Animales , Membrana Basal/fisiología , Carcinogénesis , Inflamación/fisiopatología , Integrinas/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Vasos Linfáticos/embriología , Ratones , Comunicación Paracrina , Factor C de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34080610

RESUMEN

The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.


Asunto(s)
Sistema Cardiovascular/crecimiento & desarrollo , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Animales , Sistema Cardiovascular/citología , Sistema Cardiovascular/embriología , Células Endoteliales/fisiología , Homeostasis , Humanos , Vasos Linfáticos/citología , Vasos Linfáticos/embriología , Transducción de Señal
5.
Circ Res ; 130(3): 366-383, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986653

RESUMEN

BACKGROUND: The chromatin-remodeling enzyme BRG1 (brahma-related gene 1) regulates gene expression in a variety of rapidly differentiating cells during embryonic development. However, the critical genes that BRG1 regulates during lymphatic vascular development are unknown. METHODS: We used genetic and imaging techniques to define the role of BRG1 in murine embryonic lymphatic development, although this approach inadvertently expanded our study to multiple interacting cell types. RESULTS: We found that omental macrophages fine-tune an unexpected developmental process by which erythrocytes escaping from naturally discontinuous omental blood vessels are collected by nearby lymphatic vessels. Our data indicate that circulating fibrin(ogen) leaking from gaps in omental blood vessels can trigger inflammasome-mediated IL-1ß (interleukin-1ß) production and secretion from nearby macrophages. IL-1ß destabilizes adherens junctions in omental blood and lymphatic vessels, contributing to both extravasation of erythrocytes and their uptake by lymphatics. BRG1 regulates IL-1ß production in omental macrophages by transcriptionally suppressing the inflammasome trigger RIPK3 (receptor interacting protein kinase 3). CONCLUSIONS: Genetic deletion of Brg1 in embryonic macrophages leads to excessive IL-1ß production, erythrocyte leakage from blood vessels, and blood-filled lymphatics in the developing omentum. Altogether, these results highlight a novel context for epigenetically regulated crosstalk between macrophages, blood vessels, and lymphatics.


Asunto(s)
Vasos Sanguíneos/metabolismo , ADN Helicasas/metabolismo , Interleucina-1beta/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Nucleares/metabolismo , Epiplón/metabolismo , Factores de Transcripción/metabolismo , Uniones Adherentes/metabolismo , Animales , Vasos Sanguíneos/embriología , ADN Helicasas/genética , Eritrocitos/metabolismo , Inflamasomas/metabolismo , Vasos Linfáticos/embriología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Epiplón/irrigación sanguínea , Epiplón/embriología , Factores de Transcripción/genética
6.
Genes Dev ; 30(12): 1454-69, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27313318

RESUMEN

Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/ß-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of ß-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/ß-catenin signaling in LECs. In turn, Wnt/ß-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking ß-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/ß-catenin signaling and, in turn, FOXC2.


Asunto(s)
Linfangiogénesis/fisiología , Mecanotransducción Celular/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Células Cultivadas , Células Endoteliales/citología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Humanos , Vasos Linfáticos/embriología , Ratones , beta Catenina/genética
7.
Dev Biol ; 482: 44-54, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915023

RESUMEN

Development of the mammalian lymphatic vasculature is a stepwise process requiring the specification of lymphatic endothelial cell progenitors in the embryonic veins, and their subsequent budding to give rise to most of the mature lymphatic vasculature. In mice, formation of the lymphatic vascular network starts inside the cardinal vein at around E9.5 when a subpopulation of venous endothelial cells gets committed into the lymphatic lineage by their acquisition of Prox1 expression. Identification of critical genes regulating lymphatic development facilitated the detailed cellular and molecular characterization of some of the cellular and molecular mechanisms regulating the early steps leading to the formation of the mammalian lymphatic vasculature. A better understanding of basic aspects of early lymphatic development, and the availability of novel tools and animal models has been instrumental in the identification of important novel functional roles of this vasculature network.


Asunto(s)
Células Endoteliales/citología , Células Progenitoras Endoteliales/citología , Linfangiogénesis/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Animales , Embrión de Mamíferos/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
Development ; 147(21)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32188632

RESUMEN

Bones do not normally have lymphatics. However, individuals with generalized lymphatic anomaly (GLA) or Gorham-Stout disease (GSD) develop ectopic lymphatics in bone. Despite growing interest in the development of tissue-specific lymphatics, the cellular origin of bone lymphatic endothelial cells (bLECs) is not known and the development of bone lymphatics has not been fully characterized. Here, we describe the development of bone lymphatics in mouse models of GLA and GSD. Through lineage-tracing experiments, we show that bLECs arise from pre-existing Prox1-positive LECs. We show that bone lymphatics develop in a stepwise manner where regional lymphatics grow, breach the periosteum and then invade bone. We also show that the development of bone lymphatics is impaired in mice that lack osteoclasts. Last, we show that rapamycin can suppress the growth of bone lymphatics in our models of GLA and GSD. In summary, we show that bLECs can arise from pre-existing LECs and that rapamycin can prevent the growth of bone lymphatics.


Asunto(s)
Huesos/embriología , Vasos Linfáticos/embriología , Animales , Huesos/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Integrasas/metabolismo , Vasos Linfáticos/efectos de los fármacos , Ratones Transgénicos , Mutación/genética , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Sirolimus/farmacología , Factor de Transcripción Sp7/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Genes Dev ; 29(15): 1618-30, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253536

RESUMEN

The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc-SoxF-Mafba pathway in lymphatic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis/genética , Vasos Linfáticos/embriología , Factor de Transcripción MafB/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular/genética , Embrión no Mamífero , Factor de Transcripción MafB/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
10.
Development ; 146(16)2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31375478

RESUMEN

How developing vascular networks acquire the right balance of arteries, veins and lymphatic vessels to efficiently supply and drain tissues is poorly understood. In zebrafish embryos, the robust and regular 50:50 global balance of intersegmental veins and arteries that form along the trunk prompts the intriguing question of how does the organism keep 'count'? Previous studies have suggested that the ultimate fate of an intersegmental vessel (ISV) is determined by the identity of the approaching secondary sprout emerging from the posterior cardinal vein. Here, we show that the formation of a balanced trunk vasculature involves an early heterogeneity in endothelial cell behaviour and Notch signalling activity in the seemingly identical primary ISVs that is independent of secondary sprouting and flow. We show that Notch signalling mediates the local patterning of ISVs, and an adaptive flow-mediated mechanism subsequently fine-tunes the global balance of arteries and veins along the trunk. We propose that this dual mechanism provides the adaptability required to establish a balanced network of arteries, veins and lymphatic vessels.


Asunto(s)
Tipificación del Cuerpo , Receptores Notch/metabolismo , Pez Cebra/embriología , Animales , Arterias/embriología , Polaridad Celular , Células Endoteliales/fisiología , Heterogeneidad Genética , Vasos Linfáticos/embriología , Flujo Sanguíneo Regional , Transducción de Señal , Venas/embriología , Pez Cebra/sangre
11.
Angiogenesis ; 24(2): 271-288, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33825109

RESUMEN

Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.


Asunto(s)
Linaje de la Célula , Células Endoteliales/metabolismo , Linfangiogénesis , Vasos Linfáticos/embriología , Animales , Humanos
12.
Angiogenesis ; 24(2): 345-362, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677657

RESUMEN

Vegfc/Vegfr3 signaling is critical for lymphangiogenesis, the sprouting of lymphatic vessels. In zebrafish, cells sprouting from the posterior cardinal vein can either form lymphatic precursor cells or contribute to intersegmental vein formation. Both, the Vegfc-dependent differential induction of Prox1a in sprouting cells as well as a Notch-mediated pre-pattern within intersegmental vessels have been associated with the regulation of secondary sprout behavior. However, how exactly a differential lymphatic versus venous sprout cell behavior is achieved is not fully understood. Here, we characterize a zebrafish mutant in the adaptor protein Grb2b, and demonstrate through genetic interaction studies that Grb2b acts within the Vegfr3 pathway. Mutant embryos exhibit phenotypes that are consistent with reduced Vegfr3 signaling outputs prior to the sprouting of endothelial cells from the vein. During secondary sprouting stages, loss of grb2b leads to defective cell behaviors resulting in a loss of parachordal lymphangioblasts, while only partially affecting the number of intersegmental veins. A second GRB2 zebrafish ortholog, grb2a, contributes to the development of lymphatic structures in the meninges and in the head, but not in the trunk. Our results illustrate an essential role of Grb2b in vivo for cell migration to the horizontal myoseptum and for the correct formation of the lymphatic vasculature, while being less critically required in intersegmental vein formation. Thus, there appear to be higher requirements for Grb2b and therefore Vegfr3 downstream signaling levels in lymphatic versus vein precursor-generating sprouts.


Asunto(s)
Células Endoteliales/metabolismo , Proteína Adaptadora GRB2/metabolismo , Linfangiogénesis , Neovascularización Fisiológica , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteína Adaptadora GRB2/genética , Vasos Linfáticos/embriología , Mutación , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
13.
Development ; 145(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29361560

RESUMEN

Maintenance of blood vessel integrity is crucial for vascular homeostasis and is mainly controlled at the level of endothelial cell (EC) junctions. Regulation of endothelial integrity has largely been investigated in the mature quiescent vasculature. Less is known about how integrity is maintained during vascular growth and remodeling involving extensive junctional reorganization. Here, we show that embryonic mesenteric blood vascular remodeling is associated with a transient loss of venous integrity and concomitant extravasation of red blood cells (RBCs), followed by their clearance by the developing lymphatic vessels. In wild-type mouse embryos, we observed activated platelets extending filopodia at sites of inter-EC gaps. In contrast, embryos lacking the activatory C-type lectin domain family 1, member b (CLEC1B) showed extravascular platelets and an excessive number of RBCs associated with and engulfed by the first lymphatic EC clusters that subsequently form lumenized blood-filled vessels connecting to the lymphatic system. These results uncover novel functions of platelets in maintaining venous integrity and lymphatic vessels in clearing extravascular RBCs during developmental remodeling of the mesenteric vasculature. They further provide insight into how vascular abnormalities characterized by blood-filled lymphatic vessels arise.


Asunto(s)
Eritrocitos/citología , Vasos Linfáticos/embriología , Venas Mesentéricas/embriología , Remodelación Vascular/fisiología , Animales , Plaquetas/citología , Femenino , Edad Gestacional , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Lectinas Tipo C/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo
14.
Development ; 145(10)2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773646

RESUMEN

Despite the essential role of the lymphatic vasculature in tissue homeostasis and disease, knowledge of the organ-specific origins of lymphatic endothelial progenitor cells remains limited. The assumption that most murine embryonic lymphatic endothelial cells (LECs) are venous derived has recently been challenged. Here, we show that the embryonic dermal blood capillary plexus constitutes an additional, local source of LECs that contributes to the formation of the dermal lymphatic vascular network. We describe a novel mechanism whereby rare PROX1-positive endothelial cells exit the capillary plexus in a Ccbe1-dependent manner to establish discrete LEC clusters. As development proceeds, these clusters expand and further contribute to the growing lymphatic system. Lineage tracing and analyses of Gata2-deficient mice confirmed that these clusters are endothelial in origin. Furthermore, ectopic expression of Vegfc in the vasculature increased the number of PROX1-positive progenitors within the capillary bed. Our work reveals a novel source of lymphatic endothelial progenitors employed during construction of the dermal lymphatic vasculature and demonstrates that the blood vasculature is likely to remain an ongoing source of LECs during organogenesis, raising the question of whether a similar mechanism operates during pathological lymphangiogenesis.


Asunto(s)
Capilares/citología , Células Endoteliales/citología , Proteínas de Homeodominio/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Células Madre/citología , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de Unión al Calcio/genética , Factor de Transcripción GATA2/genética , Linfangiogénesis/genética , Vasos Linfáticos/citología , Ratones , Ratones Transgénicos , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Factor C de Crecimiento Endotelial Vascular/genética
15.
Development ; 145(17)2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30042182

RESUMEN

Although major progress in our understanding of the genes and mechanisms that regulate lymphatic vasculature development has been made, we still do not know how lumen formation and maintenance occurs. Here, we identify the Ras-interacting protein Rasip1 as a key player in this process. We show that lymphatic endothelial cell-specific Rasip1-deficient mouse embryos exhibit enlarged and blood-filled lymphatics at embryonic day 14.5. These vessels have patent lumens with disorganized junctions. Later on, as those vessels become fragmented and lumens collapse, cell junctions become irregular. In addition, Rasip1 deletion at later stages impairs lymphatic valve formation. We determined that Rasip1 is essential for lymphatic lumen maintenance during embryonic development by regulating junction integrity, as Rasip1 loss results in reduced levels of junction molecules and defective cytoskeleton organization in vitro and in vivo We determined that Rasip1 regulates Cdc42 activity, as deletion of Cdc42 results in similar phenotypes to those seen following the loss of Rasip1 Furthermore, ectopic Cdc42 expression rescues the phenotypes in Rasip1-deficient lymphatic endothelial cells, supporting the suggestion that Rasip1 regulates Cdc42 activity to regulate cell junctions and cytoskeleton organization, which are both activities required for lymphatic lumen maintenance.


Asunto(s)
Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Embrión de Mamíferos/embriología , Células Endoteliales/metabolismo , Vasos Linfáticos/embriología , Uniones Estrechas/metabolismo , Animales , Proteínas Portadoras/genética , Citoesqueleto/genética , Embrión de Mamíferos/citología , Células Endoteliales/citología , Péptidos y Proteínas de Señalización Intracelular , Vasos Linfáticos/citología , Ratones , Ratones Transgénicos , Uniones Estrechas/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
16.
PLoS Genet ; 14(1): e1007146, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309404

RESUMEN

During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.


Asunto(s)
Proteínas de Drosophila/fisiología , Matriz Extracelular/fisiología , Morfogénesis/genética , Proteínas Nucleares/fisiología , Uniones Estrechas/genética , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/embriología , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vasos Linfáticos/embriología , Neovascularización Fisiológica/genética , Proteínas Nucleares/genética , Tamaño de los Órganos , Uniones Estrechas/metabolismo , Tráquea/embriología , Tráquea/metabolismo , Factores de Transcripción/genética , Dedos de Zinc
17.
Dev Biol ; 447(1): 90-102, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29224892

RESUMEN

Recently, endothelial cell metabolism has emerged as an essential driver and regulator of both blood and lymph vessel development. Evidence rapidly builds that metabolism is not only necessary for endothelial cell function, but moreover controls several aspects of the (lymph)-angiogenic process. So far, the best-characterized metabolic pathways to have an impact on angiogenesis are glycolysis, fatty acid oxidation and glutamine metabolism. Glycolysis regulates tip cell behavior by providing ATP, fatty acid oxidation controls stalk cell proliferation by producing nucleotide biomass, and glutamine metabolism is critical for tip and stalk cell dynamics by supporting Krebs cycle anaplerosis, protein production and redox homeostasis, and links to asparagine metabolism. During lymphangiogenesis, glycolysis and fatty acid oxidation are key metabolic pathways. Glycolysis provides energy for growing lymph vessels, while fatty acid oxidation is a critical metabolic regulator of lymphangiogenesis, in part by promoting nucleotide synthesis as well as by mediating epigenetic changes of histone acetylation, which promotes transcription of key lymphatic genes, and hence venous-to-lymphatic endothelial cell differentiation. On the whole, increasing knowledge on the metabolic landscape of endothelial cells offers a fresh impetus to future treatment possibilities of vascular related diseases.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Linfangiogénesis/fisiología , Neovascularización Fisiológica/fisiología , Animales , Vasos Sanguíneos/embriología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Glucólisis/fisiología , Humanos , Vasos Linfáticos/embriología
18.
Dev Biol ; 452(2): 134-143, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31112709

RESUMEN

The origin of the mammalian lymphatic vasculature has been studied for more than a century; however, details regarding organ-specific lymphatic development remain unknown. A recent study reported that cardiac lymphatic endothelial cells (LECs) stem from venous and non-venous origins in mice. Here, we identified Isl1-expressing progenitors as a potential non-venous origin of cardiac LECs. Genetic lineage tracing with Isl1-Cre reporter mice suggested a possible contribution from the Isl1-expressing pharyngeal mesoderm constituting the second heart field to lymphatic vessels around the cardiac outflow tract as well as to those in the facial skin and the lymph sac. Isl1+ lineage-specific deletion of Prox1 resulted in disrupted LYVE1+ vessel structures, indicating a Prox1-dependent mechanism in this contribution. Tracing back to earlier embryonic stages revealed the presence of VEGFR3+ and/or Prox1+ cells that overlapped with the Isl1+ pharyngeal core mesoderm. These data may provide insights into the developmental basis of heart diseases involving lymphatic vasculature and improve our understanding of organ-based lymphangiogenesis.


Asunto(s)
Linaje de la Célula , Corazón/embriología , Proteínas con Homeodominio LIM/metabolismo , Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/embriología , Factores de Transcripción/metabolismo , Animales , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Faringe/citología , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Development ; 144(1): 74-82, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27888192

RESUMEN

Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2-/- mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes.


Asunto(s)
Glándulas Mamarias Animales/embriología , Morfogénesis/genética , Receptores CCR/fisiología , Receptores de Quimiocina/fisiología , Animales , Movimiento Celular/genética , Embrión de Mamíferos , Femenino , Linfangiogénesis/genética , Vasos Linfáticos/embriología , Vasos Linfáticos/fisiología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células del Estroma/metabolismo
20.
Microcirculation ; 27(8): e12606, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31930597

RESUMEN

OBJECTIVE: The present study aimed to combine the physiological significance of irregularly shaped initial lymphatics and mechanisms of mechanical stimulation-induced lymph formation. METHODS: To confirm stretch-induced expansion of initial lymphatics, a finite element model that simulated morphological changes on a computer and fluorescent image and immunohistochemical analyses in mouse skin were adopted. Next, to quantitatively analyze the stretch-induced expansion, a simulation study was performed using a viscoelastic model of the tissue including initial lymphatics. RESULTS: On the finite element model, when the tissue was stretched, irregularly shaped lymphatics were confirmed to increase luminal volume compared with round-shaped lymphatics. Stretch-induced expansion of the real initial lymphatics was demonstrated by fluorescent images and histological studies. Thereafter, with the application of a viscoelastic model of the tissue, the relationship between the lymph formation rate (Q) and massage frequency (f) could be obtained using the following equation: Q=2Af(1-e-1/2τf) , where A and τ are constants. Excellent agreement was found between the previous data and the results of the present equation. CONCLUSIONS: We conclude that irregularly shaped initial lymphatics may lead to efficient lymph formation induced by mechanical stimulation of the tissue.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/embriología , Modelos Biológicos , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA