Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2304139120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831739

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.


Asunto(s)
Nucleósidos , Virus ARN Monocatenarios Positivos , Animales , Ratones , Nucleósidos/farmacología , Antivirales/farmacología , SARS-CoV-2 , Replicación Viral , ARN
2.
J Virol ; 98(3): e0163823, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353536

RESUMEN

Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE: The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.


Asunto(s)
Hepatitis C , Biosíntesis de Proteínas , Genética Inversa , Animales , Hepatitis C/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Mamíferos/genética , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/metabolismo , Genética Inversa/métodos , ARN Viral/genética
3.
RNA ; 28(10): 1359-1376, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35918125

RESUMEN

Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.


Asunto(s)
Hepatitis C , ARN Catalítico , Hepacivirus/genética , Humanos , Virus ARN Monocatenarios Positivos , ARN Catalítico/genética , ARN Viral/genética , Replicación Viral/genética
4.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36161446

RESUMEN

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Asunto(s)
ARN Helicasas DEAD-box , VIH-1 , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/fisiología , Virus ARN Monocatenarios Positivos/fisiología , SARS-CoV-2/fisiología
5.
J Biol Chem ; 298(5): 101923, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413290

RESUMEN

Coronavirus (CoV) genomes consist of positive-sense single-stranded RNA and are among the largest viral RNAs known to date (∼30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3'-5' exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.


Asunto(s)
Genoma Viral , Virus ARN Monocatenarios Positivos , SARS-CoV-2 , COVID-19/virología , Genoma Viral/genética , Humanos , Mutación , Virus ARN Monocatenarios Positivos/genética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
6.
J Biol Chem ; 298(2): 101529, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953856

RESUMEN

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Virus ARN de Sentido Negativo/efectos de los fármacos , Virus ARN de Sentido Negativo/enzimología , Virus Nipah/efectos de los fármacos , Virus Nipah/enzimología , Virus ARN Monocatenarios Positivos/efectos de los fármacos , Virus ARN Monocatenarios Positivos/enzimología , Virus ARN/efectos de los fármacos , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacos
7.
RNA ; 27(6): 653-664, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811147

RESUMEN

Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.


Asunto(s)
Virus ARN Monocatenarios Positivos/química , ARN de Transferencia de Histidina/química , Aminoacilación , Conformación de Ácido Nucleico , Filogenia , Virus ARN Monocatenarios Positivos/clasificación , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/metabolismo , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Histidina/metabolismo , Saccharomyces cerevisiae
8.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33313676

RESUMEN

The genus Culicoides includes biting midges, some of which are vectors for viruses that cause diseases in humans and animals. Knowledge of the roles of Culicoides in viral ecology is inadequate. We collected ~300 000 samples of Culicoides and mosquitoes in 15 representative regions within Yunnan, China. Using mosquitoes as reference vectors, we designed a comparative virome strategy to study the viral composition, diversity, hosts and spatiotemporal distribution of Culicoides. A map of viromes in Culicoides and mosquitoes in Yunan province, China, was constructed. At the same locations, Culicoides and mosquitoes usually share a similar viral diversity. At least 10 important pathogenic viruses were detected from Culicoides. Many novel viruses were discovered, including 21 segmented viruses of Flaviviridae, 180 viruses of Monjiviricetes and 130 viruses of Bunyavirales. The findings demonstrate that Culicoides is an important part of viral ecology and should be studied and monitored for potentially emerging viruses.


Asunto(s)
Ceratopogonidae/virología , Culicidae/virología , Virus ARN Monocatenarios Positivos/clasificación , Viroma , Animales
9.
Arch Virol ; 168(10): 256, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737963

RESUMEN

Senecavirus A (SVA) can cause a vesicular disease in swine. It is a positive-strand RNA virus belonging to the genus Senecavirus in the family Picornaviridae. Positive-strand RNA viruses possess positive-sense, single-stranded genomes whose untranslated regions (UTRs) have been reported to contain cis-acting RNA elements. In the present study, a total of 100 SVA isolates were comparatively analyzed at the genome level. A highly conserved fragment (HCF) was found to be located in the 3D sequence and to be close to the 3' UTR. The HCF was computationally predicted to form a stem-loop structure. Eight synonymous mutations can individually disrupt the formation of a single base pair within the stem region. We found that SVA itself was able to tolerate each of these mutations alone, as evidenced by the ability to rescue all eight single-site mutants from their individual cDNA clones, and all of them were genetically stable during serial passaging. However, the replication-competent SVA could not be rescued from another cDNA clone containing all eight mutations. The failure to recover SVA might be attributed to disruption of the predicted stem-loop structure, whereas introduction of a wild-type HCF into the cDNA clone with eight mutations still had no effect on virus recovery. These results suggest that the putative stem-loop structure at the 3' end of the 3D sequence is a cis-acting RNA element that is required for SVA growth.


Asunto(s)
Picornaviridae , Animales , Porcinos , ADN Complementario , Picornaviridae/genética , Virus ARN Monocatenarios Positivos , Regiones no Traducidas 3'/genética , Secuencia Conservada
10.
Arch Virol ; 168(10): 250, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37691052

RESUMEN

Some members of genus Colletotrichum are important plant pathogens. Here, we report a novel positive single-stranded RNA virus, Colletotrichum camelliae hypovirus 1 (CcHV1), from strain GXNN11-2 of Colletotrichum camelliae. The complete genome of CcHV1 is 9907 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt 352 to 9006. This ORF encodes a polyprotein with four conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), peptidase, and DEAD-like helicase. The CcHV1 polyprotein shares the highest similarity with Fusarium concentricum hypovirus 1. Phylogenetic analysis indicated that CcHV1 clustered with members of the genus Betahypovirus within the family Hypoviridae. This is the first report of a hypovirus in a member of the genus Colletotrichum.


Asunto(s)
Colletotrichum , Virus ARN , Colletotrichum/genética , Filogenia , Virus ARN/genética , Virus ARN Monocatenarios Positivos , Nucleótidos , Poliproteínas
11.
Arch Virol ; 168(6): 162, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195309

RESUMEN

A novel positive single-stranded RNA virus, Pleurotus ostreatus deltaflexivirus 1 (PoDFV1), was isolated from the edible fungus Pleurotus ostreatus strain ZP6. The complete genome of PoDFV1 is 7706 nucleotides (nt) long and contains a short poly(A) tail. PoDFV1 was predicted to contain one large open reading frame (ORF1) and three small downstream ORFs (ORFs 2-4). ORF1 encodes a putative replication-associated polyprotein of 1979 amino acids (aa) containing three conserved domains - viral RNA methyltransferase (Mtr), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp) - which are common to all deltaflexiviruses. ORFs 2-4 encode three small hypothetical proteins (15-20 kDa) without conserved domains or known biological functions. Sequence alignments and phylogenetic analysis suggested that PoDFV1 is a member of a new species in the genus Deltaflexivirus (family Deltaflexiviridae, order Tymovirales). To our knowledge, this is the first report of a deltaflexivirus infecting P. ostreatus.


Asunto(s)
Virus Fúngicos , Pleurotus , Virus ARN , Pleurotus/genética , Filogenia , Proteínas Virales/genética , Proteínas Virales/química , Genoma Viral , Virus ARN/genética , ARN Viral/genética , Virus ARN Monocatenarios Positivos/genética , Sistemas de Lectura Abierta
12.
J Gen Virol ; 103(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35976091

RESUMEN

Virus infection is a process that requires combined contributions from both virus and host factors. For this process to be efficient within the crowded host environment, viruses have evolved ways to manipulate and reorganize host structures to produce cellular microenvironments. Positive-strand RNA virus replication and assembly occurs in association with cytoplasmic membranes, causing a reorganization of these membranes to create microenvironments that support viral processes. Similarities between virus-induced membrane domains and cellular organelles have led to the description of these structures as virus replication organelles (vRO). Electron microscopy analysis of vROs in positive-strand RNA virus infected cells has revealed surprising morphological similarities between genetically diverse virus species. For all positive-strand RNA viruses, vROs can be categorized into two groups: those that make invaginations into the cellular membranes (In-vRO), and those that cause the production of protrusions from cellular membranes (Pr-vRO), most often in the form of double membrane vesicles (DMVs). In this review, we will discuss the current knowledge on the structure and biogenesis of these two different vRO classes as well as comparing morphology and function of vROs between various positive-strand RNA viruses. Finally, we will discuss recent studies describing pharmaceutical intervention in vRO formation as an avenue to control virus infection.


Asunto(s)
Virus ARN Monocatenarios Positivos , Replicación Viral , Membrana Celular , Hepacivirus/genética , Orgánulos , ARN Viral/genética
13.
Arch Virol ; 167(11): 2387-2390, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35927384

RESUMEN

A new positive-sense single-stranded RNA (+ssRNA) mycovirus, Verticillium dahliae magoulivirus 1 (VdMoV1), was isolated from two strains (2-19 and XLZ70) of Verticillium dahliae. The complete genome of VdMoV1 is 2303 nucleotides (nt) in length and has a large open reading frame (nt positions from 61 to 1938) encoding an RNA-dependent RNA polymerase (RdRp). A multiple sequence alignment indicated that the central region of the RdRp encoded by VdMoV1 contains eight typical viral RdRp motifs. BLASTp analysis demonstrated that VdMoV1 has the highest sequence identity (86.88%) to Bremia lactucae associated ourmia-like virus 2 (BlaOLV2). Phylogenetic analysis revealed that VdMoV1 is a new member of the genus Magoulivirus. As far as we know, VdMoV1 is the first reported member of the family Botourmiaviridae infecting V. dahliae.


Asunto(s)
Virus ARN Monocatenarios Positivos , Verticillium , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Verticillium/virología , Virus ARN Monocatenarios Positivos/aislamiento & purificación
14.
Phytopathology ; 112(11): 2449-2461, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35793152

RESUMEN

Sclerotinia sclerotiorum is a well-known phytopathogenic fungus with a wide host range. Identifying novel mycoviruses in phytopathogenic fungi is necessary to develop novel strategies for plant health protection and contribute to understanding the origin of viruses. Six new mycoviruses with positive single-stranded RNA genomes co-infecting the hypovirulent strain SCH733 of S. sclerotiorum were identified using a metatranscriptomic approach, and their complete genome sequences were molecularly determined. These mycoviruses belong to the following five families: Narnaviridae, Mitoviridae, Deltaflexviridae, Botourmiaviridae, and Ambiguiviridae. Three of these mycoviruses belong to existing International Committee on Taxonomy of Viruses (ICTV)-recognized species. Two of these newly identified mycoviruses have unique genomic features that are significantly different from those of all known mycoviruses. Phylogenetic analysis revealed that these six mycoviruses included close as well as distant relatives of known mycoviruses, thereby providing new insight into virus evolution and classification. Mycovirus horizontal transmission and elimination experiments revealed that Sclerotinia sclerotiorum narnavirus 5 is associated with hypovirulence of S. sclerotiorum, although we have not shown that it is independently responsible for the hypovirulence phenotype. This study broadens the diversity of known mycoviruses infecting S. sclerotiorum and provides a clue toward limiting hypovirulence in S. sclerotiorum.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Virus , Virus ARN Monocatenarios Positivos , Filogenia , Enfermedades de las Plantas/microbiología , Virus Fúngicos/genética , Virus ARN/genética
15.
Arch Virol ; 166(10): 2711-2722, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34313859

RESUMEN

A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features.


Asunto(s)
Fusarium/virología , Genoma Viral/genética , Virus ARN Monocatenarios Positivos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Filogenia , Enfermedades de las Plantas/microbiología , Virus ARN Monocatenarios Positivos/clasificación , Virus ARN Monocatenarios Positivos/aislamiento & purificación , ARN Bicatenario/metabolismo , ARN Viral/genética , Ribonucleasas/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Esporas Fúngicas/virología , Proteínas Virales/genética
16.
Arch Virol ; 166(10): 2869-2873, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34292373

RESUMEN

Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length. The single positive-stranded RNA genome was predicted to encode typical conserved domains of members of the genus Iflavirus in the family Iflaviridae. Phylogenetic analysis showed this virus to be closely related to the unclassified iflavirus tomato matilda associated virus (TMaV), with a maximum amino acid sequence identity of 59% in the RNA-dependent RNA polymerase domain. This low identity value justifies the recognition of the novel virus as a potential novel iflavirus. In addition to a lack of graft-transmissibility evidence, RT-PCR and HTS detection of this virus in the putative host plants were not consistent through different years and growing seasons, raising the possibility that rather than a plant virus, this was a virus infecting an organism associated with fruit tree leaves. Identification of Tetra pinnatifidae HTS-derived contigs in all fruit tree samples carrying the novel virus suggested this mite as the most likely host of the new virus (p-value < 1e-11), which is tentatively named "eriophyid mite-associated virus" (EMaV). This study highlights the importance of a careful biological study before assigning a new virus to a particular plant host when using metagenomics data.


Asunto(s)
Frutas/parasitología , Ácaros/virología , Virus ARN Monocatenarios Positivos/clasificación , Árboles/parasitología , Secuencia de Aminoácidos , Animales , Frutas/virología , Genoma Viral/genética , Metagenómica , Filogenia , Extractos Vegetales , Hojas de la Planta/parasitología , Hojas de la Planta/virología , Virus ARN Monocatenarios Positivos/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Árboles/virología
17.
Bioorg Med Chem ; 46: 116356, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416512

RESUMEN

The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.


Asunto(s)
Antivirales/farmacología , Virus ARN Monocatenarios Positivos/efectos de los fármacos , Animales , Citocinas/metabolismo , Sistema de Lectura Ribosómico/efectos de los fármacos , Sistema de Lectura Ribosómico/fisiología , Glicosilación/efectos de los fármacos , Humanos , Inmunidad/efectos de los fármacos , Inmunidad/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/fisiología , Poliaminas/metabolismo , Virus ARN Monocatenarios Positivos/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ubiquitinación/efectos de los fármacos , Ubiquitinación/fisiología
18.
J Invertebr Pathol ; 185: 107667, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34560106

RESUMEN

Managed and wild bee populations are in decline around the globe due to several biotic and abiotic stressors. Pathogenic viruses associated with the Western honey bee (Apis mellifera) have been identified as key contributors to losses of managed honey bee colonies, and are known to be transmitted to wild bee populations through shared floral resources. However, little is known about the prevalence and intensity of these viruses in wild bee populations, or how bee visitation to flowers impacts viral transmission in agroecosystems. This study surveyed honey bee, bumble bee (Bombus impatiens) and wild squash bee (Eucera (Peponapis) pruinosa) populations in Cucurbita agroecosystems across Pennsylvania (USA) for the prevalence and intensity of five honey bee viruses: acute bee paralysis virus (ABPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), and slow bee paralysis virus (SBPV). We investigated the potential role of bee visitation rate to flowers on DWV intensity among species in the pollinator community, with the expectation that increased bee visitation to flowers would increase the opportunity for transmission events between host species. We found that honey bee viruses are highly prevalent but in lower titers in wild E. pruinosa and B. impatiens than in A. mellifera populations throughout Pennsylvania (USA). DWV was detected in 88% of B. impatiens, 48% of E. pruinosa, and 95% of A. mellifera. IAPV was detected in 5% of B. impatiens and 4% of E. pruinosa, compared to 9% in A. mellifera. KBV was detected in 1% of B. impatiens and 5% of E. pruinosa, compared to 32% in A. mellifera. Our results indicate that DWV titers are not correlated with bee visitation in Cucurbita fields. The potential fitness impacts of these low viral titers detected in E. pruinosa remain to be investigated.


Asunto(s)
Abejas/virología , Virus de Insectos/fisiología , Virus ARN Monocatenarios Positivos/fisiología , Animales , Productos Agrícolas , Cucurbita , Dicistroviridae/fisiología , Pennsylvania , Polinización , Virus ARN/fisiología , Especificidad de la Especie
19.
Virologie (Montrouge) ; 25(4): 224-235, 2021 08 01.
Artículo en Francés | MEDLINE | ID: mdl-34468319

RESUMEN

Genetic recombination is a major force driving the evolution of some species of positive sense RNA viruses. Recombination events occur when at least two viruses simultaneously infect the same cell, thereby giving rise to new genomes comprised of genetic sequences originating from the parental genomes. The main mechanism by which recombination occurs involves the viral polymerase that generates a chimera as it switches templates during viral replication. Various experimental systems have alluded to the existence of recombination events that are independent of viral polymerase activity. The origins and frequency of such events remain to be elucidated to this day. Furthermore, it is not known whether non-replicative recombination yields products that are different from recombinants generated by the viral polymerase. If this is the case, then non-replicative recombination may play a unique role in the evolution of positive sense RNA viruses. Finally, the sparse data available suggest that non-replicative recombination does not necessarily involve only virus-specific sequences. It is thus possible that the non-replicative recombination observed in virus-focused studies may in fact reveal a more generalized mechanism that is non-specific to virus RNAs.


Asunto(s)
Virus ARN Monocatenarios Positivos , Recombinación Genética , Secuencia de Bases , ARN Viral/genética , Recombinación Genética/genética , Replicación Viral/genética
20.
Virologie (Montrouge) ; 25(4): 62-73, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34468320

RESUMEN

Genetic recombination is a major force driving the evolution of some species of positive sense RNA viruses. Recombination events occur when at least two viruses simultaneously infect the same cell, thereby giving rise to new genomes comprised of genetic sequences originating from the parental genomes. The main mechanism by which recombination occurs involves the viral polymerase that generates a chimera as it switches templates during viral replication. Various experimental systems have alluded to the existence of recombination events that are independent of viral polymerase activity. The origins and the frequency of such events remain to be elucidated to this day. Furthermore, it is not known whether non-replicative recombination yields products that are different from recombinants generated by the viral polymerase. If this is the case, then non-replicative recombination may play a unique role in the evolution of positive sense RNA viruses. Finally, the sparse data available suggest that non-replicative recombination does not necessarily involve only virus-specific sequences. It is thus possible that the non-replicative recombination observed in virus-focused studies may in fact reveal a more generalized mechanism that is non-specific to virus RNAs.


Asunto(s)
Virus ARN Monocatenarios Positivos , Recombinación Genética , Secuencia de Bases , ARN Viral/genética , Recombinación Genética/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA