Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959058

RESUMEN

The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.


Asunto(s)
Virus ADN , Genoma Viral , Virión , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/ultraestructura , Virión/ultraestructura , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Virus de Archaea/fisiología , Sulfolobus/virología , Sulfolobus/genética , ADN Viral/genética
2.
PLoS Biol ; 19(11): e3001442, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34752450

RESUMEN

The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/genética , Evolución Biológica , Variación Genética , Virus de Archaea/metabolismo , ADN/genética , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Mutación/genética , Filogenia , Células Procariotas/virología , Proteínas Virales/genética
3.
Proc Natl Acad Sci U S A ; 117(33): 19643-19652, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759221

RESUMEN

Living organisms expend metabolic energy to repair and maintain their genomes, while viruses protect their genetic material by completely passive means. We have used cryo-electron microscopy (cryo-EM) to solve the atomic structures of two filamentous double-stranded DNA viruses that infect archaeal hosts living in nearly boiling acid: Saccharolobus solfataricus rod-shaped virus 1 (SSRV1), at 2.8-Å resolution, and Sulfolobus islandicus filamentous virus (SIFV), at 4.0-Å resolution. The SIFV nucleocapsid is formed by a heterodimer of two homologous proteins and is membrane enveloped, while SSRV1 has a nucleocapsid formed by a homodimer and is not enveloped. In both, the capsid proteins wrap around the DNA and maintain it in an A-form. We suggest that the A-form is due to both a nonspecific desolvation of the DNA by the protein, and a specific coordination of the DNA phosphate groups by positively charged residues. We extend these observations by comparisons with four other archaeal filamentous viruses whose structures we have previously determined, and show that all 10 capsid proteins (from four heterodimers and two homodimers) have obvious structural homology while sequence similarity can be nonexistent. This arises from most capsid residues not being under any strong selective pressure. The inability to detect homology at the sequence level arises from the sampling of viruses in this part of the biosphere being extremely sparse. Comparative structural and genomic analyses suggest that nonenveloped archaeal viruses have evolved from enveloped viruses by shedding the membrane, indicating that this trait may be relatively easily lost during virus evolution.


Asunto(s)
Virus de Archaea/química , Virus ADN/química , ADN Viral/química , Sulfolobales/virología , Sulfolobus/virología , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Evolución Biológica , Cápside/química , Cápside/ultraestructura , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/ultraestructura , ADN Viral/genética , Ambientes Extremos , Genoma Viral , Filogenia
4.
J Virol ; 95(15): e0067321, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011550

RESUMEN

The International Committee on Taxonomy of Viruses (ICTV) has recently adopted a comprehensive, hierarchical system of virus taxa. The highest ranks in this hierarchy are realms, each of which is considered monophyletic but apparently originated independently of other realms. Here, we announce the creation of a new realm, Adnaviria, which unifies archaeal filamentous viruses with linear A-form double-stranded DNA genomes and characteristic major capsid proteins unrelated to those encoded by other known viruses.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/genética , Virus ADN/clasificación , Virus ADN/genética , Archaea/virología , Proteínas de la Cápside/genética , ADN Viral/genética , Genoma Viral/genética , Filogenia , Replicación Viral
5.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34328827

RESUMEN

Members of the family Thaspiviridae have linear dsDNA genomes of 27 to 29 kbp and are the first viruses known to infect mesophilic ammonia-oxidizing archaea of the phylum Thaumarchaeota. The spindle-shaped virions of Nitrosopumilus spindle-shaped virus 1 possess short tails at one pole and measure 64±3 nm in diameter and 112±6 nm in length. This morphology is similar to that of members of the families Fuselloviridae and Halspiviridae. Virus replication is not lytic but leads to growth inhibition of the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Thaspiviridae, which is available at ictv.global/report/thaspiviridae.


Asunto(s)
Archaea/virología , Virus de Archaea/clasificación , Virus ADN/clasificación , Virus de Archaea/genética , Virus de Archaea/fisiología , Virus de Archaea/ultraestructura , Virus ADN/genética , Virus ADN/fisiología , Virus ADN/ultraestructura , Genoma Viral , Especificidad del Huésped , Virión/ultraestructura , Replicación Viral
6.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33331812

RESUMEN

Ovaliviridae is a family of enveloped viruses with a linear dsDNA genome. The virions are ellipsoidal, and contain a multi-layered spool-like capsid. The viral genome is presumably replicated through protein priming by a putative DNA polymerase encoded by the virus. Progeny virions are released through hexagonal openings resulting from the rupture of virus-associated pyramids formed on the surface of infected cells. The only known host is a hyperthermophilic archaeon of the genus Sulfolobus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Ovaliviridae, which is available at ictv.global/report/ovaliviridae.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/fisiología , Virus ADN/clasificación , Virus ADN/fisiología , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Cápside/ultraestructura , Virus ADN/genética , Virus ADN/ultraestructura , Genoma Viral , Sulfolobus/virología , Virión/genética , Virión/fisiología , Virión/ultraestructura , Replicación Viral
7.
J Gen Virol ; 102(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34085921

RESUMEN

Portogloboviridae is a family of viruses with circular, double-stranded DNA genomes of about 20 kbp. Their icosahedral virions have a diameter of 87 nm, and consist of an outer protein shell, an inner lipid layer and a nucleoprotein core wound up into a spherical coil. Portogloboviruses infect hyperthermophilic archaea of the genus Saccharolobus, order Sulfolobales and are presumably nonlytic. Portogloboviruses encode mini-CRISPR arrays which they use to compete against other co-infecting viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Portogloboviridae, which is available at ictv.global/report/portogloboviridae.


Asunto(s)
Virus de Archaea/clasificación , Virus ADN/clasificación , Sulfolobaceae/virología , Virus de Archaea/genética , Virus de Archaea/fisiología , Virus de Archaea/ultraestructura , Virus ADN/genética , Virus ADN/fisiología , Virus ADN/ultraestructura , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Proteínas Virales/análisis , Virión/química , Virión/ultraestructura , Replicación Viral
8.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31666377

RESUMEN

The Nanoarchaeota are small cells with reduced genomes that are found attached to and dependent on a second archaeal cell for their growth and replication. Initially found in marine hydrothermal environments and subsequently in terrestrial geothermal hot springs, the Nanoarchaeota species that have been described are obligate ectobionts, each with a different host species. However, no viruses had been described that infect the Nanoarchaeota. Here, we identify a virus infecting Nanoarchaeota by the use of a combination of viral metagenomic and bioinformatic approaches. This virus, tentatively named Nanoarchaeota Virus 1 (NAV1), consists of a 35.6-kb circular DNA genome coding for 52 proteins. We further demonstrate that this virus is broadly distributed among Yellowstone National Park hot springs. NAV1 is one of the first examples of a virus infecting a single-celled organism that is itself an ectobiont of another single-celled organism.IMPORTANCE Here, we present evidence of the first virus found to infect Nanoarchaeota, a symbiotic archaean found in acidic hot springs of Yellowstone National Park, USA. Using culture-independent techniques, we provide the genome sequence and identify the archaeal host species of a novel virus, NAV1. NAV1 is the first example of a virus infecting an archaeal species that is itself an obligate symbiont and dependent on a second host organism for growth and cellular replication. On the basis of annotation of the NAV1 genome, we propose that this virus is the founding member of a new viral family, further demonstrating the remarkable genetic diversity of archaeal viruses.


Asunto(s)
Virus de Archaea/aislamiento & purificación , Virus de Archaea/fisiología , Manantiales de Aguas Termales/virología , Nanoarchaeota/virología , Virus de Archaea/clasificación , Virus de Archaea/genética , Secuencia de Bases , Virus ADN/genética , Genoma Viral , Especificidad del Huésped , Metagenoma , Metagenómica , Nanoarchaeota/genética , Parques Recreativos , Simbiosis , Estados Unidos
9.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32213609

RESUMEN

We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of nanometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells.IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments.


Asunto(s)
Virus de Archaea , Virus ADN , ADN Viral , Thermoproteus/virología , Proteínas Virales , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/metabolismo , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Thermoproteus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34417873

RESUMEN

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Asunto(s)
Virus de Archaea/clasificación , Bacteriófagos/clasificación , Sociedades Científicas/organización & administración , Archaea/virología , Bacterias/virología
11.
Arch Virol ; 165(11): 2723-2731, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32583077

RESUMEN

Established in 2016, the family Pleolipoviridae comprises globally distributed archaeal viruses that produce pleomorphic particles. Pseudo-spherical enveloped virions of pleolipoviruses are membrane vesicles carrying a nucleic acid cargo. The cargo can be either a single-stranded or double-stranded DNA molecule, making this group the first family introduced in the 10th Report on Virus Taxonomy including both single-stranded and double-stranded DNA viruses. The length of the genomes is approximately 7-17 kilobase pairs, or kilonucleotides in the case of single-stranded molecules. The genomes are circular single-stranded DNA, circular double-stranded DNA, or linear double-stranded DNA molecules. Currently, eight virus species and seven proposed species are classified in three genera: Alphapleolipovirus (five species), Betapleolipovirus (nine species), and Gammapleolipovirus (one species). Here, we summarize the updated taxonomy of the family Pleolipoviridae to reflect recent advances in this field, with the focus on seven newly proposed species in the genus Betapleolipovirus: Betapleolipovirus HHPV3, HHPV4, HRPV9, HRPV10, HRPV11, HRPV12, and SNJ2.


Asunto(s)
Archaea/virología , Virus de Archaea/clasificación , Virus de Archaea/aislamiento & purificación , ADN Viral/genética , Genoma Viral , Virión/genética
12.
13.
Environ Microbiol ; 21(6): 2129-2147, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30920125

RESUMEN

The diversity of archaeal viruses is severely undersampled compared with that of viruses infecting bacteria and eukaryotes, limiting our understanding on their evolution and environmental impacts. Here, we describe the isolation and characterization of four new viruses infecting halophilic archaea from the saline Lake Retba, located close to Dakar on the coast of Senegal. Three of the viruses, HRPV10, HRPV11 and HRPV12, have enveloped pleomorphic virions and should belong to the family Pleolipoviridae, whereas the forth virus, HFTV1, has an icosahedral capsid and a long non-contractile tail, typical of bacterial and archaeal members of the order Caudovirales. Comparative genomic and phylogenomic analyses place HRPV10, HRPV11 and HRPV12 into the genus Betapleolipovirus, whereas HFTV1 appears to be most closely related to the unclassified Halorubrum virus HRTV-4. Differently from HRTV-4, HFTV1 encodes host-derived minichromosome maintenance helicase and PCNA homologues, which are likely to orchestrate its genome replication. HFTV1, the first archaeal virus isolated on a Haloferax strain, could also infect Halorubrum sp., albeit with an eightfold lower efficiency, whereas pleolipoviruses nearly exclusively infected autochthonous Halorubrum strains. Mapping of the metagenomic sequences from this environment to the genomes of isolated haloarchaeal viruses showed that these known viruses are underrepresented in the available viromes.


Asunto(s)
Virus de Archaea/aislamiento & purificación , Haloferax/virología , Halorubrum/virología , Lagos/virología , Virus de Archaea/clasificación , Virus de Archaea/genética , Metagenoma , Filogenia , Senegal , Virión/clasificación , Virión/genética , Virión/aislamiento & purificación
14.
Environ Microbiol ; 21(6): 1980-1988, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30370610

RESUMEN

Marine Group I (MGI) Thaumarchaeota are some of the most abundant microorganisms in the deep ocean and responsible for much of the ammonia oxidation occurring in this environment. In this work, we present 35 sequences assembled from metagenomic samples of the first uncultivated Caudovirales viruses associated with Thaumarchaeota, which we designated marthavirus. Most of the sequences were obtained from cellular metagenomes confirming that they represent an important tool to study environmental viral communities due to cells retrieved while undergoing viral lysis. Metagenomic recruitment showed that this viral population is formed by very divergent entities with high intrapopulation homogeneity. However, metatranscriptomic analyses revealed the same differential expression profile with the capsid as major transcript, indicative of viruses during the lytic cycle. The cobalamine biosynthesis gene cobS, an auxiliary metabolic gene, was also highly expressed during the infection. These analyses expand our understanding of the global diversity of archaeal viruses.


Asunto(s)
Archaea/virología , Virus de Archaea/aislamiento & purificación , Caudovirales/aislamiento & purificación , Archaea/genética , Virus de Archaea/clasificación , Virus de Archaea/genética , Caudovirales/clasificación , Caudovirales/genética , Genoma Viral , Metagenoma , Filogenia
15.
Environ Microbiol ; 21(6): 2002-2014, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30451355

RESUMEN

Viruses infecting hyperthermophilic archaea of the phylum Crenarchaeota display enormous morphological and genetic diversity, and are classified into 12 families. Eight of these families include only one or two species, indicating sparse sampling of the crenarchaeal virus diversity. In an attempt to expand the crenarchaeal virome, we explored virus diversity in the acidic, hot spring Umi Jigoku in Beppu, Japan. Environmental samples were used to establish enrichment cultures under conditions favouring virus replication. The host diversity in the enrichment cultures was restricted to members of the order Sulfolobales. Metagenomic sequencing of the viral communities yielded seven complete or near-complete double-stranded DNA virus genomes. Six of these genomes could be attributed to polyhedral and filamentous viruses that were observed by electron microscopy in the enrichment cultures. Two icosahedral viruses represented species in the family Portogloboviridae. Among the filamentous viruses, two were identified as new species in the families Rudiviridae and Lipothrixviridae, whereas two other formed a group seemingly distinct from the known virus genera. No particle morphotype could be unequivocally assigned to the seventh viral genome, which apparently represents a new virus type. Our results suggest that filamentous viruses are globally distributed and are prevalent virus types in extreme geothermal environments.


Asunto(s)
Archaea/virología , Virus de Archaea/aislamiento & purificación , Bacteriófagos/aislamiento & purificación , Manantiales de Aguas Termales/virología , Rudiviridae/genética , Rudiviridae/aislamiento & purificación , Archaea/genética , Archaea/aislamiento & purificación , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/fisiología , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Genoma Viral , Manantiales de Aguas Termales/química , Japón , Lipothrixviridae/clasificación , Lipothrixviridae/genética , Lipothrixviridae/aislamiento & purificación , Lipothrixviridae/fisiología , Metagenoma , Filogenia , Rudiviridae/clasificación , Replicación Viral
16.
Arch Virol ; 164(3): 667-674, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30523430

RESUMEN

Viruses are ubiquitous in the biosphere and greatly affect the hosts they infect. It is generally accepted that members of every microbial taxon are susceptible to at least one virus, and a plethora of bacterial viruses are known. In contrast, knowledge of the archaeal virosphere is still limited. Here, a novel lytic archaeal virus is described, designated "Drs3", as well as its host, Methanobacterium formicicum strain Khl10. This hydrogenotrophic methanogenic archaeon and its virus were isolated from the anaerobic digester of an experimental biogas plant in Germany. The tailed virus has an icosahedral head with a diameter of approximately 60 nm and a long non-contractile tail of approximately 230 nm. These structural observations suggest that the new isolate belongs to the family Siphoviridae, but it could not be assigned to an existing genus. Lysis of the host Khl10 was observed 40-44 h after infection. Lysis of the type strain Methanobacterium formicicum DSMZ 1535 was not observed in the presence of Drs3, pointing towards resistance in the type strain or a rather narrow host range of this newly isolated archaeal virus. The complete 37-kb linear dsDNA genome of Drs3 contains 39 open reading frames, only 12 of which show similarity to genes with predicted functions.


Asunto(s)
Virus de Archaea/aislamiento & purificación , Methanobacterium/virología , Siphoviridae/aislamiento & purificación , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/fisiología , Alemania , Especificidad del Huésped , Sistemas de Lectura Abierta , Filogenia , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/fisiología , Proteínas Virales/genética
17.
Virol J ; 15(1): 67, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636073

RESUMEN

BACKGROUND: Analysis of metagenomic sequences has become the principal approach for the study of the diversity of viruses. Many recent, extensive metagenomic studies on several classes of viruses have dramatically expanded the visible part of the virosphere, showing that previously undetected viruses, or those that have been considered rare, actually are important components of the global virome. RESULTS: We investigated the provenance of viruses related to tail-less bacteriophages of the family Tectiviridae by searching genomic and metagenomics sequence databases for distant homologs of the tectivirus-like Double Jelly-Roll major capsid proteins (DJR MCP). These searches resulted in the identification of numerous genomes of virus-like elements that are similar in size to tectiviruses (10-15 kilobases) and have diverse gene compositions. By comparison of the gene repertoires, the DJR MCP-encoding genomes were classified into 6 distinct groups that can be predicted to differ in reproduction strategies and host ranges. Only the DJR MCP gene that is present by design is shared by all these genomes, and most also encode a predicted DNA-packaging ATPase; the rest of the genes are present only in subgroups of this unexpectedly diverse collection of DJR MCP-encoding genomes. Only a minority encode a DNA polymerase which is a hallmark of the family Tectiviridae and the putative family "Autolykiviridae". Notably, one of the identified putative DJR MCP viruses encodes a homolog of Cas1 endonuclease, the integrase involved in CRISPR-Cas adaptation and integration of transposon-like elements called casposons. This is the first detected occurrence of Cas1 in a virus. Many of the identified elements are individual contigs flanked by inverted or direct repeats and appear to represent complete, extrachromosomal viral genomes, whereas others are flanked by bacterial genes and thus can be considered as proviruses. These contigs come from metagenomes of widely different environments, some dominated by archaea and others by bacteria, suggesting that collectively, the DJR MCP-encoding elements have a broad host range among prokaryotes. CONCLUSIONS: The findings reported here greatly expand the known host range of (putative) viruses of bacteria and archaea that encode a DJR MCP. They also demonstrate the extreme diversity of genome architectures in these viruses that encode no universal proteins other than the capsid protein that was used as the marker for their identification. From a supposedly minor group of bacterial and archaeal viruses, these viruses are emerging as a substantial component of the prokaryotic virome.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/genética , Proteínas de la Cápside/genética , Variación Genética , Genoma Viral/genética , Tectiviridae/clasificación , Tectiviridae/genética , Archaea/virología , Bacterias/virología , Bases de Datos Genéticas , Genómica , Metagenómica , Filogenia
18.
J Virol ; 90(24): 11043-11055, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27681128

RESUMEN

Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE: Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome.


Asunto(s)
Archaea/virología , Virus de Archaea/clasificación , Evolución Biológica , Elementos Transponibles de ADN , Genoma Viral , Filogenia , Virus de Archaea/genética , Bacterias/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Biología Computacional , Redes Reguladoras de Genes , Plásmidos/metabolismo , Virión/genética
19.
J Virol ; 90(7): 3458-68, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26763997

RESUMEN

UNLABELLED: The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE: Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In this research, we report a virus-centered approach to virus discovery and characterization, linking viral metagenomic sequences to a virus particle, its sequenced genome, and its host directly in environmental samples, without using culture-dependent methods. This approach provides a pathway for the discovery, isolation, and characterization of new viruses. While this study used an acidic hot spring environment to characterize a new archaeal virus, Acidianus tailed spindle virus (ATSV), the approach can be generally applied to any environment to expand knowledge of virus diversity in all three domains of life.


Asunto(s)
Acidianus/virología , Virus de Archaea/clasificación , Proteínas de la Cápside/genética , Genoma Viral/genética , Manantiales de Aguas Termales/virología , Virus de Archaea/genética , Virus de Archaea/aislamiento & purificación , Secuencia de Bases , Mapeo Cromosómico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Circular/genética , ADN Viral/genética , Calor , Hibridación Fluorescente in Situ , Metagenómica , Análisis de Secuencia de ADN
20.
Mol Microbiol ; 98(6): 1002-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26331239

RESUMEN

Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.


Asunto(s)
Virus de Archaea/genética , Virus de Archaea/aislamiento & purificación , Genoma Arqueal , Halobacteriaceae/virología , Provirus/genética , Animales , Virus de Archaea/clasificación , Virus de Archaea/fisiología , Lisogenia , Familia de Multigenes , Sistemas de Lectura Abierta , Provirus/ultraestructura , ARN de Transferencia/genética , Virión/genética , Integración Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA