Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Annu Rev Genet ; 55: 603-632, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34546795

RESUMEN

The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity.


Asunto(s)
Chlorophyta , Volvox , Evolución Biológica , Chlorophyta/genética , Genoma , Filogenia , Volvox/genética
2.
Plant Cell ; 34(4): 1326-1353, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35018470

RESUMEN

Cell division is fundamental to all organisms and the green alga used here exhibits both key animal and plant functions. Specifically, we analyzed the molecular and cellular dynamics of early embryonic divisions of the multicellular green alga Volvox carteri (Chlamydomonadales). Relevant proteins related to mitosis and cytokinesis were identified in silico, the corresponding genes were cloned, fused to yfp, and stably expressed in Volvox, and the tagged proteins were studied by live-cell imaging. We reveal rearrangements of the microtubule cytoskeleton during centrosome separation, spindle formation, establishment of the phycoplast, and generation of previously unknown structures. The centrosomes participate in initiation of spindle formation and determination of spindle orientation. Although the nuclear envelope does not break down during early mitosis, intermixing of cytoplasm and nucleoplasm results in loss of nuclear identity. Finally, we present a model for mitosis in Volvox. Our study reveals enormous dynamics, clarifies spatio-temporal relationships of subcellular structures, and provides insight into the evolution of cell division.


Asunto(s)
Volvox , Animales , División Celular/genética , Volvox/genética
3.
BMC Biol ; 22(1): 79, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600528

RESUMEN

BACKGROUND: Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS: Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS: Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.


Asunto(s)
Chlorophyceae , Volvox , Filogenia , Evolución Biológica , Volvox/genética , Fósiles , Plantas , Diferenciación Celular
4.
Plant Cell ; 33(4): 1058-1082, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793846

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii is a choice reference system for the study of photosynthesis and chloroplast metabolism, cilium assembly and function, lipid and starch metabolism, and metal homeostasis. Despite decades of research, the functions of thousands of genes remain largely unknown, and new approaches are needed to categorically assign genes to cellular pathways. Growing collections of transcriptome and proteome data now allow a systematic approach based on integrative co-expression analysis. We used a dataset comprising 518 deep transcriptome samples derived from 58 independent experiments to identify potential co-expression relationships between genes. We visualized co-expression potential with the R package corrplot, to easily assess co-expression and anti-correlation between genes. We extracted several hundred high-confidence genes at the intersection of multiple curated lists involved in cilia, cell division, and photosynthesis, illustrating the power of our method. Surprisingly, Chlamydomonas experiments retained a significant rhythmic component across the transcriptome, suggesting an underappreciated variable during sample collection, even in samples collected in constant light. Our results therefore document substantial residual synchronization in batch cultures, contrary to assumptions of asynchrony. We provide step-by-step protocols for the analysis of co-expression across transcriptome data sets from Chlamydomonas and other species to help foster gene function discovery.


Asunto(s)
Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Arabidopsis/genética , Técnicas de Cultivo Celular por Lotes , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/citología , Cilios/genética , Ritmo Circadiano/genética , Genes de Plantas , Histonas/genética , Fotosíntesis/genética , Proteínas Ribosómicas/genética , Volvox/genética
5.
Int Microbiol ; 27(1): 213-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37264144

RESUMEN

Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.


Asunto(s)
ARN Largo no Codificante , Volvox , Volvox/genética , Volvox/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Evolución Biológica
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34011609

RESUMEN

Transitions between separate sexes (dioecy) and other mating systems are common across eukaryotes. Here, we study a change in a haploid dioecious green algal species with male- and female-determining chromosomes (U and V). The genus Volvox is an oogamous (with large, immotile female gametes and small, motile male gametes) and includes both heterothallic species (with distinct male and female genotypes, associated with a mating-type system that prevents fusion of gametes of the same sex) and homothallic species (bisexual, with the ability to self-fertilize). We date the origin of an expanded sex-determining region (SDR) in Volvox to at least 75 Mya, suggesting that homothallism represents a breakdown of dioecy (heterothallism). We investigated the involvement of the SDR of the U and V chromosomes in this transition. Using de novo whole-genome sequences, we identified a heteromorphic SDR of ca 1 Mbp in male and female genotypes of the heterothallic species Volvox reticuliferus and a homologous region (SDLR) in the closely related homothallic species Volvox africanus, which retained several different hallmark features of an SDR. The V. africanus SDLR includes a large region resembling the female SDR of the presumptive heterothallic ancestor, whereas most genes from the male SDR are absent. However, we found a multicopy array of the male-determining gene, MID, in a different genomic location from the SDLR. Thus, in V. africanus, an ancestrally female genotype may have acquired MID and thereby gained male traits.


Asunto(s)
Genoma , Haploidia , Filogenia , Volvox/genética , Proteínas Algáceas , Evolución Biológica , Mapeo Cromosómico , Células Germinativas , Reproducción , Volvox/clasificación
7.
BMC Genomics ; 24(1): 654, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904088

RESUMEN

BACKGROUND: Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI). METHODS: We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type. RESULTS: Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteri predicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants. CONCLUSIONS: We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.


Asunto(s)
Volvox , Volvox/genética , Transcriptoma , Isoformas de Proteínas/genética
8.
Biol Lett ; 18(6): 20220059, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35728616

RESUMEN

Understanding how cooperation evolved and is maintained remains an important and often controversial topic because cheaters that reap the benefits of cooperation without paying the costs can threaten the evolutionary stability of cooperative traits. Cooperation-and especially reproductive altruism-is particularly relevant to the evolution of multicellularity, as somatic cells give up their reproductive potential in order to contribute to the fitness of the newly emerged multicellular individual. Here, we investigated cheating in a simple multicellular species-the green alga Volvox carteri, in the context of the mechanisms that can stabilize reproductive altruism during the early evolution of clonal multicellularity. We found that the benefits cheater mutants can gain in terms of their own reproduction are pre-empted by a cost in survival due to increased sensitivity to stress. This personal cost of cheating reflects the antagonistic pleiotropic effects that the gene coding for reproductive altruism-regA-has at the cell level. Specifically, the expression of regA in somatic cells results in the suppression of their reproduction potential but also confers them with increased resistance to stress. Since regA evolved from a life-history trade-off gene, we suggest that co-opting trade-off genes into cooperative traits can provide a built-in safety system against cheaters in other clonal multicellular lineages.


Asunto(s)
Altruismo , Volvox , Evolución Biológica , Reproducción , Volvox/genética
9.
BMC Biol ; 19(1): 182, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465312

RESUMEN

BACKGROUND: The volvocine algae, which include the single-celled species Chlamydomonas reinhardtii and the colonial species Volvox carteri, serve as a model in which to study the evolution of multicellularity and cellular differentiation. Studies reconstructing the history of this group have by and large relied on datasets of one to a few genes for phylogenetic inference and ancestral character state reconstruction. As a result, volvocine phylogenies lack concordance depending on the number and/or type of genes (i.e., chloroplast vs nuclear) chosen for phylogenetic inference. While multiple studies suggest that multicellularity evolved only once in the volvocine algae, that each of its three colonial families is monophyletic, and that there have been at least three independent origins of cellular differentiation in the group, other studies call into question one or more of these conclusions. An accurate assessment of the evolutionary history of the volvocine algae requires inference of a more robust phylogeny. RESULTS: We performed RNA sequencing (RNA-seq) on 55 strains representing 47 volvocine algal species and obtained similar data from curated databases on 13 additional strains. We then compiled a dataset consisting of transcripts for 40 single-copy, protein-coding, nuclear genes and subjected the predicted amino acid sequences of these genes to maximum likelihood, Bayesian inference, and coalescent-based analyses. These analyses show that multicellularity independently evolved at least twice in the volvocine algae and that the colonial family Goniaceae is not monophyletic. Our data further indicate that cellular differentiation arose independently at least four, and possibly as many as six times, within the volvocine algae. CONCLUSIONS: Altogether, our results demonstrate that multicellularity and cellular differentiation are evolutionarily labile in the volvocine algae, affirming the importance of this group as a model system for the study of major transitions in the history of life.


Asunto(s)
Filogenia , Teorema de Bayes , Evolución Biológica , Diferenciación Celular , Chlamydomonas reinhardtii , Transcriptoma , Volvox/genética
10.
Plant J ; 103(6): 2301-2317, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603539

RESUMEN

Hydroxyproline-rich glycoproteins (HRGPs) constitute a major group of proteins of the extracellular matrix (ECM). The multicellular green alga Volvox carteri is a suitable model organism in which to study the evolutionary transition to multicellularity, including the basic principles and characteristics of an ECM. In Volvox, the ECM is dominated by a single HRGP family: the pherophorins. Our inventory amounts to 117 pherophorin-related genes in V. carteri. We focused on a pherophorin with an unexpected characteristic: pherophorin-S is a soluble, non-cross-linked ECM protein. Using transformants expressing a YFP-tagged pherophorin-S we observed the synthesis and secretion of pherophorin-S by somatic cells in vivo, and we then traced the protein during its conspicuous migration to the ECM around prehatching juveniles and its localized concentration there. Our results provide insights into how an ECM zone surrounding the progeny is remotely affected by distantly located parental somatic cells. In view of the properties and migration of pherophorin-S, we conclude that pherophorin-S is likely to act as an ECM plasticizer to allow for dynamic ECM remodeling.


Asunto(s)
Proteínas Algáceas/metabolismo , Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Volvox/metabolismo , Proteínas Algáceas/genética , Regulación de la Expresión Génica , Glicoproteínas/genética , Volvox/genética , Volvox/crecimiento & desarrollo
11.
Plant J ; 102(2): 276-298, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31778231

RESUMEN

In photosynthetic organisms many processes are light dependent and sensing of light requires light-sensitive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been classified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1-related proteins from a wide range of species. The detailed subcellular localization of fluorescence-tagged Babo1 shows that it accumulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a lesser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In four-celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corresponding d-roots. The unequal distribution of Babo1 in four-celled embryos could be an integral part of a geometrical system in early embryogenesis, which establishes the anterior-posterior polarity and influences the spatial arrangement of all embryonic structures and characteristics. Due to its retinal-binding capacity, Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex organisms. Thus, our findings push the Babo1 research in another direction.


Asunto(s)
Proteínas Algáceas/metabolismo , División Celular , Volvox/genética , Proteínas Algáceas/genética , Cuerpos Basales/metabolismo , Cuerpos Basales/ultraestructura , Genes Reporteros , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Filogenia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Volvox/metabolismo , Volvox/ultraestructura
12.
Development ; 145(7)2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29549112

RESUMEN

Volvocine algae constitute a unique comparative model for investigating the evolution of oogamy from isogamous mating types. The sex- or mating type-determining gene MID encodes a conserved RWP-RK transcription factor found in either the MT- or male mating locus of dioecious volvocine species. We previously found that MID from the isogamous species Chlamydomonas reinhardtii (CrMID) could not induce ectopic spermatogenesis when expressed heterologously in Volvox carteri females, suggesting coevolution of Mid function with gamete dimorphism. Here we found that ectopic expression of MID from the anisogamous species Pleodorina starrii (PsMID) could efficiently induce spermatogenesis when expressed in V. carteri females and, unexpectedly, that GpMID from the isogamous species Gonium pectorale was also able to induce V. carteri spermatogenesis. Neither VcMID nor GpMID could complement a C. reinhardtii mid mutant, at least partly owing to instability of heterologous Mid proteins. Our data show that Mid divergence was not a major contributor to the transition between isogamy and anisogamy/oogamy in volvocine algae, and instead implicate changes in cis-regulatory interactions and/or trans-acting factors of the Mid network in the evolution of sexual dimorphism.


Asunto(s)
Proteínas de Unión al ADN/genética , Procesos de Determinación del Sexo/genética , Espermatogénesis/genética , Volvox/genética , Evolución Molecular , Regulación de la Expresión Génica , Células Germinativas , Immunoblotting , Reacción en Cadena de la Polimerasa , Caracteres Sexuales , Volvox/fisiología
13.
J Phycol ; 57(3): 967-974, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33523505

RESUMEN

Volvox barberi is a multicellular green alga forming spherical colonies of 10,000-50,000 differentiated somatic and germ cells. We observed that in culture, these colonies actively self-organized in just a few minutes into "flocks" that contained as many as 100 colonies moving and rotating collectively for hours. The colonies in flocks formed two-dimensional, irregular, active crystals, that is, geometric lattices within which individual colonies rotated separately. These groupings sometimes disassembled back into individual colonies just as quickly, but in some cases, flocks persisted over several hours. Close inspection of flock formation in the presence of a tracer dye suggested that colony and flock rotations were producing vortices in the fluid medium over a range spanning multiple flock diameters, perhaps providing a physical mechanism for aggregation.


Asunto(s)
Chlorophyceae , Volvox , Volvox/genética
14.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201658

RESUMEN

The death of photoreceptor cells is induced by continuous light exposure. However, it is unclear whether light damage was induced in retinal ganglion cells with photosensitivity by transduction of optogenetic genes. In this study, we evaluated the phototoxicities of continuous light exposure on retinal ganglion cells after transduction of the optogenetic gene mVChR1 using an adeno-associated virus vector. Rats were exposed to continuous light for a week, and visually evoked potentials (VEPs) were recorded. The intensities of continuous light (500, 1000, 3000, and 5000 lx) increased substantially after VEP recordings. After the final recording of VEPs, retinal ganglion cells (RGCs) were retrogradely labeled with a fluorescein tracer, FluoroGold, and the number of retinal ganglion cells was counted under a fluorescent microscope. There was no significant reduction in the amplitudes of VEPs and the number of RGCs after exposure to any light intensity. These results indicated that RGCs were photosensitive after the transduction of optogenetic genes and did not induce any phototoxicity by continuous light exposure.


Asunto(s)
Optogenética/métodos , Células Ganglionares de la Retina/fisiología , Rodopsina/genética , Animales , Dependovirus/genética , Potenciales Evocados Visuales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Luz/efectos adversos , Técnicas de Placa-Clamp , Estimulación Luminosa , Ratas , Células Ganglionares de la Retina/patología , Rodopsina/metabolismo , Estilbamidinas/química , Estilbamidinas/metabolismo , Transducción Genética , Volvox/genética
15.
Plant J ; 97(4): 661-672, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30406958

RESUMEN

Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase gene (nitA) regulatory sequences to conditionally express Streptococcus pyogenes Cas9, and V. carteri U6 RNA gene regulatory sequences to constitutively express single-guide RNA (sgRNA) transcripts. Volvox carteri was bombarded with both Cas9 vector and one of several sgRNA vectors programmed to target different test genes (glsA, regA and invA), and transformants were selected for expression of a hygromycin-resistance marker present on the sgRNA vector. Hygromycin-resistant transformants grown with nitrate as sole nitrogen source (inducing for nitA) were tested for Cas9 and sgRNA expression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNA plasmid with glsA protospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously described glsA mutants, and sequencing of the glsA gene in independent mutants revealed short deletions within the targeted region of glsA, indicative of Cas9-directed non-homologous end joining. Similarly, bombardment of a morphologically wild-type strain with the Cas9 plasmid and sgRNA plasmids targeting regA or invA yielded regA and invA mutant transformants/progeny, respectively (at rates of 0.1-100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development in V. carteri, and of developmental novelty in the volvocine algae.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Volvox/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Mutagénesis/genética , Mutagénesis/fisiología
16.
J Neurosci Res ; 98(3): 410-421, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-28862809

RESUMEN

Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia luciferase mutant GLucM23, to depolarizing and hyperpolarizing channelrhodopsins with increased light sensitivity. The combination of GLucM23 with Volvox channelrhodopsin-1 produced LMO4, while combining GLucM23 with the anion channelrhodopsin iChloC yielded iLMO4. We found efficient activation of these channelrhodopsins in the presence of the luciferase substrate, as indicated by responses measured in both single neurons and in neuronal populations of mice and rats, as well as by changes in male rat behavior during amphetamine-induced rotations. We conclude that these new luminopsins will be useful for bimodal opto- and chemogenetic analyses of brain function.


Asunto(s)
Channelrhodopsins , Luciferasas , Neuronas/fisiología , Optogenética/métodos , Potenciales de Acción , Adenoviridae/fisiología , Animales , Channelrhodopsins/genética , Channelrhodopsins/fisiología , Femenino , Vectores Genéticos , Células HEK293 , Hipocampo/fisiología , Humanos , Luciferasas/genética , Luciferasas/fisiología , Masculino , Ratones , Cultivo Primario de Células , Ratas Sprague-Dawley , Volvox/genética
18.
BMC Biol ; 16(1): 144, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30522480

RESUMEN

BACKGROUND: The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two-the channelrhodopsins-were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. RESULTS: Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called "two-component cyclase opsins" (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. CONCLUSIONS: Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Opsinas/genética , Volvox/genética , Adenosina Trifosfato/metabolismo , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/efectos de la radiación , Opsinas/metabolismo , Optogenética , Fotobiología , Volvox/metabolismo
19.
Plant J ; 92(6): 1232-1244, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28980350

RESUMEN

Chlamydomonas reinhardtii is a unicellular green alga that has attracted interest due to its potential biotechnological applications, and as a model for algal biofuel and energy metabolism. Despite all the advantages that this unicellular alga offers, poor and inconsistent expression of nuclear transgenes remains an obstacle for basic and applied research. We used a data-mining strategy to identify highly expressed genes in Chlamydomonas whose flanking sequences were tested for the ability to drive heterologous nuclear transgene expression. Candidates identified in this search included two ribosomal protein genes, RPL35a and RPL23, and ferredoxin, FDX1, whose flanking regions including promoters, terminators and untranslated sequences could drive stable luciferase transgene expression to significantly higher levels than the commonly used Hsp70A-RBCS2 (AR) hybrid promoter/terminator sequences. The RPL23 flanking sequences were further tested using the zeocin resistance gene sh-ble as a reporter in monocistronic and dicistronic constructs, and consistently yielded higher numbers of zeocin-resistant transformants and higher levels of resistance than AR- or PSAD-based vectors. Chlamydomonas RPL23 sequences also enabled transgene expression in Volvox carteri. Our study provides an additional benchmark for strong constitutive expression of transgenes in Chlamydomonas, and develops a general approach for identifying flanking sequences that can be used to drive transgene expression for any organism where transcriptome data are available.


Asunto(s)
Región de Flanqueo 3'/genética , Región de Flanqueo 5'/genética , Chlamydomonas reinhardtii/genética , Volvox/genética , Núcleo Celular/metabolismo , Expresión Génica , Vectores Genéticos/genética , Luciferasas/genética , Regiones Promotoras Genéticas/genética , Regiones Terminadoras Genéticas/genética , Transgenes , Regiones no Traducidas/genética
20.
Am Nat ; 192(3): E93-E105, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30125231

RESUMEN

From the male peacock's tail plumage to the floral displays of flowering plants, traits related to sexual reproduction are often complex and exaggerated. Why has sexual reproduction become so complicated? Why have such exaggerated sexual traits evolved? Early work posited a connection between multicellularity and sexual traits such as anisogamy (i.e., the evolution of small sperm and large eggs). Anisogamy then drives the evolution of other forms of sexual dimorphism. Yet the relationship between multicellularity and the evolution of sexual traits has not been empirically tested. Given their extensive variation in both multicellular complexity and sexual systems, the volvocine green algae offer a tractable system for understanding the interrelationship of multicellular complexity and sex. Here we show that species with greater multicellular complexity have a significantly larger number of derived sexual traits, including anisogamy, internal fertilization, and secondary sexual dimorphism. Our results demonstrate that anisogamy repeatedly evolved from isogamous multicellular ancestors and that anisogamous species are larger and produce larger zygotes than isogamous species. In the volvocine algae, the evolution of multicellularity likely drives the evolution of anisogamy, and anisogamy subsequently drives secondary sexual dimorphism. Multicellularity may set the stage for the overall diversity of sexual complexity throughout the Tree of Life.


Asunto(s)
Evolución Biológica , Chlamydomonas reinhardtii/genética , Caracteres Sexuales , Volvox/genética , Meiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA