Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Appl Environ Microbiol ; 90(3): e0181823, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38332488

RESUMEN

Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.


Asunto(s)
Micotoxinas , Zearalenona , Zeranol , Humanos , Animales , Zearalenona/química , Zearalenona/metabolismo , Zeranol/química , Zeranol/metabolismo , Lactonas , Mutación Puntual , Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Cinética , Micotoxinas/metabolismo
2.
FASEB J ; 37(11): e23212, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773760

RESUMEN

As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.


Asunto(s)
MicroARNs , Zearalenona , Animales , Femenino , Zearalenona/metabolismo , Zearalenona/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Zea mays/genética , Zea mays/metabolismo , MicroARNs/metabolismo , Cabras/metabolismo , Estrés Oxidativo , Transducción de Señal
3.
Environ Res ; 246: 118094, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176630

RESUMEN

Zearalenone (ZEN) is a mycotoxin found in food and feed that impairs the function of multiple organs, especially the liver. However, the specific mechanisms through which ZEN induces liver damage in broiler chickens are not well understood. Therefore, this study aimed to identify the key genes linked to the hepatotoxicity induced by ZEN exposure in broiler chickens. Gene expression data from ZEN-treated and control chicken embryo primary hepatocytes (CEPHs) were used to implement differential expression analysis. Totally, 436 differentially expressed genes (DEGs) were detected, in which 223 and 213 genes were up- and down-regulated in ZEN-treated CEPHs, respectively. Gene ontology analysis suggested that these DEGs were involved in various biological processes, including chromosome segregation, mitotic cytokinesis, mitotic cell cycle, cell division, and mitotic spindle organization. Pathway analysis showed that the DEGs were associated with p53, FoxO, ubiquitin-mediated proteolysis, cell cycle, and mismatch repair signaling pathways. Furthermore, the hub genes, including BRCA1, CDC45, CDCA3, CDKN3, CENPE, CENPF, CENPI, CENPM, CENPU, and CEP55, potentially contributed to ZEN-induced hepatotoxicity. In conclusion, our study provides the valuable insight into the mechanism underlying ZEN-induced hepatotoxicity in broiler chickens.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Micotoxinas , Zearalenona , Embrión de Pollo , Animales , Zearalenona/toxicidad , Zearalenona/metabolismo , Pollos/genética , Pollos/metabolismo , Micotoxinas/toxicidad , Antioxidantes/farmacología
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473826

RESUMEN

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Asunto(s)
Micotoxinas , Zearalenona , Humanos , Femenino , Animales , Ovinos , Zearalenona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Células de la Granulosa/metabolismo , Antioxidantes/farmacología , Micotoxinas/metabolismo , Apoptosis
5.
Appl Microbiol Biotechnol ; 107(16): 5107-5118, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37401996

RESUMEN

Zearalenone (ZEN) is a mycotoxin that causes serious threats to human health. People are exposed to ZEN contamination externally and internally through many ways, while environmental-friendly strategies for efficient elimination of ZEN are urgently needed worldwide. Previous studies revealed that the lactonase Zhd101 from Clonostachys rosea can hydrolyze ZEN to low toxicity compounds. In this work, the enzyme Zhd101 was conducted with combinational mutations to enhance its application properties. The optimal mutant (V153H-V158F), named Zhd101.1, was selected and introduced into the food-grade recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-Zhd101.1), followed by induced expression and secretion into the supernatant. The enzymatic properties of this mutant were extensively examined, revealing a 1.1-fold increase in specific activity, as well as improved thermostability and pH stability, compared to the wild-type enzyme. The ZEN degradation tests and the reaction parameters optimization were carried out in both solutions and the ZEN-contaminated corns, using the fermentation supernatants of the food-grade yeast strain. Results showed that the degradation rates for ZEN by fermentation supernatants reached 96.9% under optimal reaction conditions and 74.6% in corn samples, respectively. These new results are a useful reference to zearalenone biodegradation technologies and indicated that the mutant enzyme Zhd101.1 has potential to be used in food and feed industries. KEY POINTS: • Mutated lactonase showed 1.1-fold activity, better pH stability than the wild type. • The strain K. lactis GG799(pKLAC1-Zhd101.1) and the mutant Zhd101.1 are food-grade. • ZEN degradation rates by supernatants reached 96.9% in solution and 74.6% in corns.


Asunto(s)
Callosidades , Micotoxinas , Zearalenona , Humanos , Zearalenona/metabolismo , Mutación
6.
Cell Mol Life Sci ; 79(5): 258, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35469021

RESUMEN

Previous works have shown that zearalenone (ZEA), as an estrogenic pollutant, has adverse effects on mammalian folliculogenesis. In the present study, we found that prolonged exposure of female mice to ZEA around the end of pregnancy caused severe impairment of primordial follicle formation in the ovaries of newborn mice and altered the expression of many genes in oocytes as revealed by single-cell RNA sequencing (scRNA-seq). These changes were associated with morphological and molecular alterations of mitochondria, increased autophagic markers in oocytes, and epigenetic changes in the ovaries of newborn mice from ZEA-exposed mothers. The latter increased expression of HDAC2 deacetylases was leading to decreased levels of H3K9ac and H4K12ac. Most of these modifications were relieved when the expression of  Hdac2 in newborn ovaries was reduced by RNA interference during in vitro culture in the presence of ZEA. Such changes were also alleviated in offspring ovaries from mothers treated with both ZEA and the coenzyme Q10 (CoQ10), which is known to be able to restore mitochondrial activities. We concluded that impaired mitochondrial activities in oocytes caused by ZEA are at the origin of metabolic alterations that modify the expression of genes controlling autophagy and primordial follicle assembly through changes in epigenetic histones.


Asunto(s)
Ovario , Zearalenona , Animales , Femenino , Humanos , Mamíferos , Ratones , Mitocondrias , Madres , Oocitos/metabolismo , Embarazo , Interferencia de ARN , Zearalenona/metabolismo , Zearalenona/toxicidad
7.
Arch Toxicol ; 97(8): 2155-2168, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328583

RESUMEN

Deoxynivalenol (DON) and zearalenone (ZEN) are often detected in plant materials used to produce feed for pre-pubertal gilts. Daily exposure to small amounts of these mycotoxins causes subclinical conditions in pigs and affects various biological processes (e.g. mycotoxin biotransformation). The aim of this preclinical study was to evaluate the effect of low monotonic doses of DON and ZEN (12 µg/kg body weight-BW-and 40 µg/kg BW, respectively), administered alone or in combination to 36 prepubertal gilts for 42 days, on the degree of immunohistochemical expression of oestrogen receptors (ERs) in the liver and the mRNA expression of genes encoding selected liver enzymes during biotransformation processes. The level of expression of the analysed genes proves that the tested mycotoxins exhibit variable biological activity at different stages of biotransformation. The biological activity of low doses of mycotoxins determines their metabolic activity. Therefore, taking into account the impact of low doses of mycotoxins on energy-intensive processes and their endogenous metabolism, it seems that the observed situation may lead to the activation of adaptation mechanisms.


Asunto(s)
Micotoxinas , Zearalenona , Porcinos , Animales , Femenino , Zearalenona/toxicidad , Zearalenona/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Sus scrofa/metabolismo , Micotoxinas/metabolismo , Hígado/metabolismo
8.
Mar Drugs ; 21(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37504922

RESUMEN

Hepatotoxic contaminants such as zearalenone (ZEA) are widely present in foods. Marine algae have a wide range of potential applications in pharmaceuticals, cosmetics, and food products. Research is ongoing to develop treatments and products based on the compounds found in algae. Fucoxanthin (FXN) is a brown-algae-derived dietary compound that is reported to prevent hepatotoxicity caused by ZEA. This compound has multiple biological functions, including anti-diabetic, anti-obesity, anti-microbial, and anti-cancer properties. Furthermore, FXN is a powerful antioxidant. In this study, we examined the effects of FXN on ZEA-induced stress and inflammation in HepG2 cells. MTT assays, ROS generation assays, Western blots, and apoptosis analysis were used to evaluate the effects of FXN on ZEA-induced HepG2 cell inflammation. Pre-incubation with FXN reduced the cytotoxicity of ZEA toward HepG2 cells. FXN inhibited the ZEA-induced production of pro-inflammatory cytokines, including IL-1 ß, IL-6, and TNF-α. Moreover, FXN increased HO-1 expression in HepG2 by activating the PI3K/AKT/NRF2 signaling pathway. In conclusion, FXN inhibits ZEA-induced inflammation and oxidative stress in hepatocytes by targeting Nrf2 via activating PI3K/AKT signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Zearalenona , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Zearalenona/toxicidad , Zearalenona/metabolismo , Transducción de Señal , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Apoptosis
9.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569719

RESUMEN

This study presents a simple and cost-effective method for isolating hepatocytes from liver biopsies obtained from healthy and ketotic dairy cows, which can be utilized for studying cellular metabolism, drug toxicity, and hepatocyte-specific gene function and regulation. The expression of hepatocyte marker genes (G6PC, ALB, CYP1A2) was measured and found to be highest at 6 h post-isolation, with a subsequent decrease over time. Cells isolated from ketotic livers exhibited lower expression levels than those from healthy livers. Furthermore, for the functional characterization of ketotic hepatocytes, the cells were exposed to varying doses of zearalenone (ZEA). While doses of 10-50 µM did not affect cell viability, the highest dose of ZEA (100 µM) significantly decreased cell viability, as measured using XTT assay. Additionally, the potential induction of cytochrome P450 A1 (CYP1A1) by ZEA was found. Despite limitations such as a short-term culture, this model provides a useful tool for conducting toxicological research.


Asunto(s)
Citocromo P-450 CYP1A1 , Zearalenona , Femenino , Bovinos , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Zearalenona/toxicidad , Zearalenona/metabolismo , Hepatocitos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Biopsia , Células Cultivadas
10.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298614

RESUMEN

Zearalenone (ZEA) and deoxynivalenol (DON) are two common mycotoxins produced by the genus Fusarium and have potential immunotoxic effects that may lead to a weak immune response against bacterial infections. Listeria monocytogenes (L. monocytogenes), a food-borne pathogenic microorganism ubiquitous in the environment, actively multiplies in the liver, where hepatocytes are capable of resistance through mediated innate immune responses. At present, it is not clear if ZEA and DON affect hepatocyte immune responses to L. monocytogenes infection or the mechanisms involved. Therefore, in this study, in vivo and in vitro models were used to investigate the effects of ZEA and DON on the innate immune responses of hepatocytes and related molecules after L. monocytogenes infection. In vivo studies revealed that ZEA and DON inhibited the toll-like receptors 2 (TLR2)/nuclear factor kappa-B (NFκB) pathway in the liver tissue of L. monocytogenes-infected mice, downregulating the expression levels of Nitric oxide (NO), in the liver and repressing the immune response. In addition, ZEA and DON inhibited Lipoteichoic acid (LTA)-induced expression of TLR2 and myeloid differentiation factor 88 (MyD88) in Buffalo Rat Liver (BRL 3A) cells in vitro, downregulating the TLR2/NFκB signaling pathway and resulting in the decreased expression levels of NO, causing immunosuppressive effects. In summary, ZEA and DON can negatively regulate NO levels through TLR2/NFκB, inhibiting the innate immune responses of the liver, and aggravate L. monocytogenes infections in mouse livers.


Asunto(s)
Fusarium , Listeria monocytogenes , Listeriosis , Micotoxinas , Zearalenona , Ratas , Ratones , Animales , Zearalenona/metabolismo , Micotoxinas/metabolismo , Fusarium/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , FN-kappa B/metabolismo , Hepatocitos/metabolismo , Inmunidad Innata , Transducción de Señal
11.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901882

RESUMEN

Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Zearalenona , Femenino , Porcinos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Zearalenona/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Integrinas/metabolismo , Apoptosis , Glucósidos/farmacología , Células de la Granulosa/metabolismo , Mamíferos/metabolismo
12.
J Sci Food Agric ; 103(12): 5981-5991, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37115188

RESUMEN

BACKGROUND: Mycotoxins contamination in food and feed has emerged as an issue of serious concern because they pose serious health risks to both humans and livestock. The study aimed to evaluate the effects of two rumen-derived Enterococcus spp. on fermentation and hygienic quality of artificially contaminated corn silages. The toxigenic fungal-infested (FI) and non-fungal infested (NFI) corn was harvested at 1/2 milk line stage and ensiled without additives (CON) or with Enterococcus faecalis (E) or Enterococcus faecium (M). RESULTS: The pH of FI silages was higher than that of NFI silages, the pH in NFI-M was lower than in NFI-CON. Inoculating E. faecium markedly increased lactic acid concentration compared to CON and E silages. Both E. faecium and E. faecalis decreased the deoxynivalenol (DON) and zearalenone (ZEN) concentrations compared with the CON for FI silages, while E. faecium was more effective in eliminating aflatoxin B1 (AFB1 ). The FI silage had higher bacterial and fungal Shannon indexes than NFI silages. The relative abundance (RA) of Aspergillus and Fusarium marked a decline from day 5 to day 90. Inoculating E. faecium and E. faecalis reduced the RA of Penicillium compared to CON. In vitro mycotoxins removal assay indicated that E. faecium was more effective in AFB1 detoxification while having lower detoxifying ZEN capacity than E. faecalis. CONCLUSION: Inoculating rumen-derived Enterococcus spp. isolates alleviated the negative effects of fungal infestation on the fermentation and hygienic quality of corn silages by changing the microbial communities and detoxifying mycotoxins. © 2023 Society of Chemical Industry.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Humanos , Zea mays/química , Micotoxinas/metabolismo , Ensilaje/análisis , Antifúngicos/metabolismo , Enterococcus , Rumen/metabolismo , Zearalenona/metabolismo , Fermentación
13.
Appl Microbiol Biotechnol ; 106(21): 6877-6886, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36173450

RESUMEN

Zearalenone (ZEN) and its derivatives are one of the most contaminated fungal toxins worldwide, posing a severe threat to food security and human life. Traditional physical and chemical detoxifying methods are unsatisfactory due to incomplete detoxification, nutrient loss, and secondary pollutants. In recent years, bioremediation for eliminating fungal toxins has been gradually investigated. ZEN lactone hydrolase (lactonase) has been widely studied because of its high activity, mild conditions, and non-toxic product property. This review comprehensively represents the gene mining, characterization, molecular modification, and application of microbial-derived ZEN lactonases. It is aimed to elucidate the advantages and challenges of ZEN lactonases in industrial application, which also provides perspectives on obtaining innovative and promising biocatalysts for ZEN degradation. KEY POINTS: • A timely and concise review related to enzymatic elimination towards ZEN is shown. • The catalytic conditions and mechanism of ZEN lactonase is presented. • The modification and application of ZEN lactonase are exhibited also.


Asunto(s)
Contaminantes Ambientales , Micotoxinas , Zearalenona , Hidrolasas/metabolismo , Lactonas , Zearalenona/metabolismo
14.
Appl Microbiol Biotechnol ; 106(12): 4353-4365, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35705747

RESUMEN

Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Alimentos , Contaminación de Alimentos , Micotoxinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zearalenona/metabolismo
15.
Arch Toxicol ; 96(12): 3385-3402, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35986755

RESUMEN

Humans and animals are exposed to multiple substances in their food and feed that might have a negative health impact. Among these substances, the Fusarium mycoestrogen zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL) and α-zearalanol (α-ZAL) are known to possess endocrine disruptive properties. In a mixed diet or especially animal feed, these potential contaminants might be ingested together with naturally occurring phytoestrogens such as soy isoflavones. So far, risk assessment of potential endocrine disruptors is usually based on adverse effects of single compounds whereas studies investigating combinatorial effects are scarce. In the present study, we investigated the estrogenic potential of mycoestrogens and the isoflavones genistein (GEN), daidzein (DAI) and glycitein (GLY) as well as equol (EQ), the gut microbial metabolite of DAI, in vitro alone or in combination, using the alkaline phosphatase (ALP) assay in Ishikawa cells. In the case of mycoestrogens, the tested concentration range included 0.001 to 10 nM with multiplication steps of 10 in between, while for the isoflavones 1000 times higher concentrations were investigated. For the individual substances the following order of estrogenicity was obtained: α-ZEL > α-ZAL > ZEN > GEN > EQ > DAI > GLY. Most combinations of isoflavones with mycoestrogens enhanced the estrogenic response in the investigated concentrations. Especially lower concentrations of ZEN, α-ZEL and α-ZAL (0.001-0.01 nM) in combination with low concentrations of GEN, DAI and EQ (0.001-0.1 µM) strongly increased the estrogenic response compared to the single substances.


Asunto(s)
Disruptores Endocrinos , Isoflavonas , Zearalenona , Zeranol , Humanos , Animales , Zearalenona/toxicidad , Zearalenona/metabolismo , Equol , Fitoestrógenos/toxicidad , Genisteína/toxicidad , Disruptores Endocrinos/toxicidad , Fosfatasa Alcalina , Estrona
16.
Drug Chem Toxicol ; 45(6): 2519-2527, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34380342

RESUMEN

In this study, we evaluated the in vitro effects of 1-50 µM zearalenone (ZEA), deoxynivalenol (DON) and T-2 toxin (T-2) on rabbit spermatozoa for as much as 8 h of in vitro exposure. Our results indicate that all sperm quality parameters were negatively affected by these fusariotoxins in a time- and dose-dependent manner. The most prominent structure affected by ZEA was the plasma membrane, exhibiting alterations consistent with the onset of apoptosis and reactive oxygen species (ROS) overproduction. This correlated with the most prominent decline of the sperm motility among all selected fusariotoxins. Significant necrotic changes and mitochondrial dysfunction were primarily responsible for the sperm damage in the presence of T-2. Finally, exposure of spermatozoa to DON led to a significant decrease in the DNA integrity. This study may provide new information on the specific mechanisms of action involved in the in vitro toxic behavior of fusariotoxins on male gametes.


Asunto(s)
Toxina T-2 , Zearalenona , Animales , Masculino , Conejos , Toxina T-2/toxicidad , Zearalenona/toxicidad , Zearalenona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Motilidad Espermática , Semen/metabolismo , Espermatozoides
17.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293400

RESUMEN

Zearalenone (ZEN) is a widespread contaminant of cereals and agricultural products which causes food safety issues. Ingesting food or feed contaminated with ZEN can disrupt the intestinal epithelial barrier function. The RhoA/ROCK signaling pathway plays a key role in regulating the epithelial barrier function, but studies on such roles have rarely focused on the intestine. The aim of this experiment was to investigate the exact mechanism of ZEN-induced intestinal barrier damage and whether the RhoA/ROCK signaling pathway is involved. The results showed that ZEN significantly induced alkaline phosphatase (AP) activity and FITC-dextran (4 kDa) passage across the epithelial barrier, which significantly reduced the transepithelial resistance (TEER). Meanwhile, ZEN could induce the significantly down-regulated mRNA expression of tight junction proteins (occludin, claudin-1, ZO-1, and claudin-3) and redistribution of ZO-1 immunofluorescence. Further studies demonstrated that ZEN exposure activated the RhoA/ROCK signaling pathway, significantly up-regulated the mRNA expression of ROCK1, the main effector of the signaling pathway, the protein expression of phosphorylated myosin light chain (MLC) and myosin light chain kinase (MLCK), and relatively increased the activity of ATP in cells, simultaneously remodeling the cytoskeleton (F-actin). Overall, our study indicated that ZEN induced intestinal barrier dysfunction by activating the RhoA/ROCK signaling pathway.


Asunto(s)
Quinasa de Cadena Ligera de Miosina , Zearalenona , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Zearalenona/metabolismo , Ocludina/metabolismo , Claudina-1/metabolismo , Actinas/metabolismo , Claudina-3/metabolismo , Fosfatasa Alcalina/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Intestinos , Transducción de Señal , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo
18.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142835

RESUMEN

Both zearalenone (ZEA) and lipopolysaccharide (LPS) can induce oxidative stress, and even apoptosis in bovine mammary epithelial cells (MAC-T), but not much attention has been given to the synergistic effect of ZEA and LPS. In this study, we treated MAC-T cells with different concentrations of LPS (1, 10, 50, and 100 µg/mL) and ZEA (5, 15, and 30 µM) to induce cell damage. Previous results show that MAC-T cell viability decreases with increasing LPS concentration. Meanwhile, 1 µg/mL LPS and ZEA were selected for combined treatment in subsequent studies. It was found that co-treatment with ZEA and LPS increases the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), decreases mitochondrial membrane potential (MMP), and superoxide dismutase (SOD), and reduces glutathione (GSH). ZEA and LPS are found to activate endoplasmic reticulum (ER) stress by increasing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP). It increases cell apoptosis by suppressing the expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2), indicated by up-regulation of Bcl2-associated X protein (Bax) and Cysteinyl aspartate-specific proteinases 3 (caspase-3) expression. The above results suggest that the synergistic effect of ZEA and LPS aggravate cytotoxicity.


Asunto(s)
Estrés del Retículo Endoplásmico , Zearalenona , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis , Ácido Aspártico/metabolismo , Caspasa 3/metabolismo , Bovinos , Células Epiteliales/metabolismo , Glucosa/metabolismo , Glutatión/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Malondialdehído/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Zearalenona/metabolismo , Zearalenona/toxicidad , Proteína X Asociada a bcl-2/metabolismo
19.
Shokuhin Eiseigaku Zasshi ; 63(3): 117-121, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-35858796

RESUMEN

Fusarium species infect the major cereals consumed as food and feed, contaminating them with various toxic secondary metabolites known as toxins. Among these toxins, which include trichothecenes, zearalenone (ZEA), and fumonisins, the type-B trichothecene deoxynivalenol (DON) is generally considered as the most important. The present study evaluates an analytical method for the detection and quantification of multiple Fusarium toxins, namely, DON, acetyl forms of DON (3-Ac-DON and 15-Ac-DON), a glycoside form of DON (DON-3G), and other Fusarium toxins (nivalenol, an acetyl form of NIV (fusarenonX), T-2 and HT-2 toxins, diacetoxyscirpenol, and ZEA) in Job's tears and buckwheat.


Asunto(s)
Coix , Fagopyrum , Fusarium , Micotoxinas , Tricotecenos , Zearalenona , Grano Comestible/química , Contaminación de Alimentos/análisis , Fusarium/metabolismo , Micotoxinas/análisis , Micotoxinas/metabolismo , Micotoxinas/toxicidad , Tricotecenos/análisis , Tricotecenos/metabolismo , Tricotecenos/toxicidad , Zearalenona/análisis , Zearalenona/metabolismo , Zearalenona/toxicidad
20.
Protein Expr Purif ; 187: 105933, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273541

RESUMEN

Zearalenone (ZEN), one of the most dangerous mycotoxins, causes enormous economic losses in the food and feed industries. To solve the problem of ZEN pollution, ZEN detoxifying enzymes are in emergent need. In this study, a zearalenone lactonohydrolase from Trichoderma aggressivum, denoted as ZHD-P, was heterologously expressed and characterized. The intracellular ZHD-P from E. coli BL21(DE3) exhibited high activity for ZEN degradation (191.94 U/mg), with the optimal temperature and pH of 45 °C and 7.5-9.0, respectively. With excellent temperature stability, the intracellular ZHD-P retained 100% activity when it was incubated at 25-40 °C for 1 h. Furthermore, we firstly constructed an E. coli cell surface display system for ZHD-P. The surface-displayed ZHD-P exhibited high activity against ZEN and showed optimal activity at 40 °C and pH 9.0. With superior pH stability, the surface-displayed ZHD-P retained 80% activity when it was incubated at pH 5.0-11.0 for 12 h. Interestingly, the metal ions tolerance of the surface-displayed ZHD-P was better than the intracellular form. Additionally, the surface-displayed ZHD-P could be reused four times with the residual enzyme activity of more than 50%. The biotoxicity assessment using P. phosphoreum T3 indicated that ZEN could be degraded into hypotoxic products by the intracellular or surface-displayed ZHD-P. ZHD-P could be feasible for ZEN detoxification.


Asunto(s)
Hidrolasas/genética , Proteínas Recombinantes/genética , Zearalenona/metabolismo , Secuencia de Aminoácidos , Escherichia coli , Regulación de la Expresión Génica , Concentración de Iones de Hidrógeno , Hidrolasas/metabolismo , Hypocreales , Unión Proteica , Proteínas Recombinantes/metabolismo , Propiedades de Superficie , Zearalenona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA