Three-dimensional culture models of normal and malignant breast epithelial cells.
Nat Methods
; 4(4): 359-65, 2007 Apr.
Article
in En
| MEDLINE
| ID: mdl-17396127
Extracellular matrix is a key regulator of normal homeostasis and tissue phenotype. Important signals are lost when cells are cultured ex vivo on two-dimensional plastic substrata. Many of these crucial microenvironmental cues may be restored using three-dimensional (3D) cultures of laminin-rich extracellular matrix (lrECM). These 3D culture assays allow phenotypic discrimination between nonmalignant and malignant mammary cells, as the former grown in a 3D context form polarized, growth-arrested acinus-like colonies whereas the latter form disorganized, proliferative and nonpolar colonies. Signaling pathways that function in parallel in cells cultured on plastic become reciprocally integrated when the cells are exposed to basement membrane-like gels. Appropriate 3D culture thus provides a more physiologically relevant approach to the analysis of gene function and cell phenotype ex vivo. We describe here a robust and generalized method for the culturing of various human breast cell lines in three dimensions and describe the preparation of cellular extracts from these cultures for molecular analyses. The procedure below describes the 3D 'embedded' assay, in which cells are cultured embedded in an lrECM gel (Fig. 1). By lrECM, we refer to the solubilized extract derived from the Engelbreth-Holm-Swarm mouse sarcoma cells. For a discussion of user options regarding 3D matrices, see Box 1. Alternatively, the 3D 'on-top' assay, in which cells are cultured on top of a thin lrECM gel overlaid with a dilute solution of lrECM, may be used as described in Box 2 (Fig. 1 and Fig. 2).
Full text:
1
Database:
MEDLINE
Main subject:
Breast Neoplasms
/
Mammary Glands, Human
/
Epithelial Cells
Limits:
Female
/
Humans
Language:
En
Year:
2007
Type:
Article