Your browser doesn't support javascript.
loading
Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling.
Gustafsson, Jon Petter; Persson, Ingmar; Kleja, Dan Berggren; Van Schaik, Joris W J.
Affiliation
  • Gustafsson JP; Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. gustafjp@kth.se
Environ Sci Technol ; 41(4): 1232-7, 2007 Feb 15.
Article in En | MEDLINE | ID: mdl-17593724
ABSTRACT
The complexation of iron(III) to soil organic matter is important for the binding of trace metals in natural environments because of competition effects. In this study, we used extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the binding mode for iron(III) in two soil samples from organic mor layers, one of which was also treated with iron(III). In most cases the EXAFS spectra had three significant contributions, inner-core Fe-O/N interactions at about 2.02(2) A, Fe-C interactions in the second scattering shell at 3.00(4) A, and a mean Fe-Fe distance at 3.37(3) A. One untreated sample showed features typical for iron (hydr)oxides; however, after treatment of iron(III) the EXAFS spectrum was dominated by organically complexed iron. The presence of a Fe-Fe distance in all samples showed that the major part of the organically complexed iron was hydrolyzed, most likely in a mixture of complexes with an inner core of (O5Fe)2O and (O5Fe)3O. These results were used to constrain a model for metal-humic complexation, the Stockholm Humic Model (SHM). The model was able to describe iron(III) binding verywell at low pH considering only one dimeric iron(III)-humic complex. The competition effect on trace metals was also well described.
Subject(s)
Search on Google
Database: MEDLINE Main subject: Soil / Humic Substances / Metals / Models, Chemical Language: En Year: 2007 Type: Article
Search on Google
Database: MEDLINE Main subject: Soil / Humic Substances / Metals / Models, Chemical Language: En Year: 2007 Type: Article