Autoimmune-mediated reduction of high-density lipoprotein-cholesterol and paraoxonase 1 activity in systemic lupus erythematosus-prone gld mice.
Arthritis Rheum
; 63(1): 201-11, 2011 Jan.
Article
in En
| MEDLINE
| ID: mdl-20882670
OBJECTIVE: To characterize modifications of high-density lipoprotein (HDL) in autoimmune gld mice that may be relevant to premature atherosclerosis in systemic lupus erythematosus, and to assess their relationship to specific aspects of autoimmune disease. METHODS: HDL cholesterol (HDL-C), apolipoprotein A-I (Apo A-I), paraoxonase 1 (PON1) activity, hepatic gene expression, and HDL biogenesis were measured in aging female gld and wild-type congenic mice. Autoantibodies, lymphoid organs, and cytokines were analyzed by enzyme-linked immunosorbent assay, flow cytometry, and multiplex assay, respectively. RESULTS: Plasma HDL-C, HDL Apo A-I, and HDL-associated PON1 activity were reduced in aging gld mice in association with the development of autoimmunity, independent of changes in hepatic Apo A-I and PON1 expression or HDL biogenesis. Hepatic induction of the acute-phase reactant serum amyloid A1 resulted in its incorporation into HDL in gld mice. Deletion of the lipid-sensitive receptor G2A in gld mice (G2A-/- gld) attenuated reductions in HDL-C and PON1 activity without altering hepatic Apo A-I and PON1 expression, HDL biogenesis, or levels of acute-phase proinflammatory cytokines. Plasma anti-Apo A-I autoantibodies were elevated in aging gld mice commensurate with detectable increases in Apo A-I immune complexes. Autoantibody levels were lower in aging G2A-/- gld mice compared with gld mice, and anti-Apo A-I autoantibody levels were significantly related to HDL-C concentrations (r=-0.645, P<0.00004) and PON1 activity (r=-0.555, P<0.0007) among autoimmune gld and G2A-/- gld mice. CONCLUSION: Autoantibodies against Apo A-I contribute to reducing HDL-C and PON1 activity in autoimmune gld mice independently of hepatic HDL biogenesis, suggesting that functional impairment and premature clearance of HDL immune complexes may be principal mechanisms involved.
Full text:
1
Database:
MEDLINE
Main subject:
Autoimmunity
/
Aryldialkylphosphatase
/
Cholesterol, HDL
/
Lupus Erythematosus, Systemic
Limits:
Animals
Language:
En
Year:
2011
Type:
Article