Your browser doesn't support javascript.
loading
Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs.
Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.
Affiliation
  • Liu CW; Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
  • Polkovnikov A; Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
  • Sandvik AW; Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
Phys Rev Lett ; 114(14): 147203, 2015 Apr 10.
Article in En | MEDLINE | ID: mdl-25910158
We discuss an Ising spin glass where each S=1/2 spin is coupled antiferromagnetically to three other spins (3-regular graphs). Inducing quantum fluctuations by a time-dependent transverse field, we use out-of-equilibrium quantum Monte Carlo simulations to study dynamic scaling at the quantum glass transition. Comparing the dynamic exponent and other critical exponents with those of the classical (temperature-driven) transition, we conclude that quantum annealing is less efficient than classical simulated annealing in bringing the system into the glass phase. Quantum computing based on the quantum annealing paradigm is therefore inferior to classical simulated annealing for this class of problems. We also comment on previous simulations where a parameter is changed with the simulation time, which is very different from the true Hamiltonian dynamics simulated here.
Search on Google
Database: MEDLINE Language: En Year: 2015 Type: Article
Search on Google
Database: MEDLINE Language: En Year: 2015 Type: Article