Your browser doesn't support javascript.
loading
Joint effect of the SMN2 and SERF1A genes on childhood-onset types of spinal muscular atrophy in Serbian patients.
Brkusanin, Milos; Kosac, Ana; Jovanovic, Vladimir; Pesovic, Jovan; Brajuskovic, Goran; Dimitrijevic, Nikola; Todorovic, Slobodanka; Romac, Stanka; Milic Rasic, Vedrana; Savic-Pavicevic, Dusanka.
Affiliation
  • Brkusanin M; Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
  • Kosac A; Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia.
  • Jovanovic V; Department of Genetic Research, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia.
  • Pesovic J; Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
  • Brajuskovic G; Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
  • Dimitrijevic N; Department of Neurology, University Children's Hospital, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
  • Todorovic S; Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
  • Romac S; Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia.
  • Milic Rasic V; Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
  • Savic-Pavicevic D; Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
J Hum Genet ; 60(11): 723-8, 2015 Nov.
Article in En | MEDLINE | ID: mdl-26311540
ABSTRACT
Spinal muscular atrophy (SMA) is caused by functional loss of the survival of motor neuron 1 (SMN1) gene. Despite genetic homogeneity, phenotypic variability indicates the involvement of disease modifiers. SMN1 is located in 5q13.2 segmental duplication, enriched in genes and prone to unequal rearrangements, which results in copy number polymorphism (CNP). We examined the influence of CNP of 5q13.2 genes and their joint effect on childhood-onset SMA phenotype. Multiplex ligation-dependent probe amplification (MLPA) was used to construct 5q13.2 alleles and assess copy number of the SMN2, small EDRK-rich factor 1A (SERF1A) and NLR family apoptosis inhibitory protein (NAIP) genes in 99 Serbian patients with SMN1 homozygous absence (23-type I, 37-type II and 39-mild type III) and 122 patients' parents. Spearman rank test was performed to test correlation of individual genes and SMA type. Generalized linear models and backward selection were performed to obtain a model explaining phenotypic variation with the smallest set of variables. 5q13.2 alleles most commonly associated with type I harbored large-scale deletions, while those detected in types II and III originated from conversion of SMN1 to SMN2. Inverse correlation was observed between SMN2, SERF1A and NAIP CNP and SMA type (P=2.2e-16, P=4.264e-10, P=2.722e-8, respectively). The best minimal model describing phenotypic variability included SMN2 (P<2e-16), SERF1A (P<2e-16) and their interaction (P=0.02628). SMN2 and SERF1A have a joint modifying effect on childhood-onset SMA phenotype.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Spinal Muscular Atrophies of Childhood / Nerve Tissue Proteins Type of study: Prognostic_studies Limits: Child / Female / Humans / Male Country/Region as subject: Europa Language: En Year: 2015 Type: Article

Full text: 1 Database: MEDLINE Main subject: Spinal Muscular Atrophies of Childhood / Nerve Tissue Proteins Type of study: Prognostic_studies Limits: Child / Female / Humans / Male Country/Region as subject: Europa Language: En Year: 2015 Type: Article