Your browser doesn't support javascript.
loading
Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
Shao, Huifeng; Yang, Xianyan; He, Yong; Fu, Jianzhong; Liu, Limin; Ma, Liang; Zhang, Lei; Yang, Guojing; Gao, Changyou; Gou, Zhongru.
Affiliation
  • Shao H; The State Key Lab of Fluid Power Transmission and Control, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
Biofabrication ; 7(3): 035010, 2015 Sep 10.
Article in En | MEDLINE | ID: mdl-26355654
ABSTRACT
The densification of pore struts in bioceramic scaffolds is important for structure stability and strength reliability. An advantage of ceramic ink writing is the precise control over the microstructure and macroarchitecture. However, the use of organic binder in such ink writing process would heavily affect the densification of ceramic struts and sacrifice the mechanical strength of porous scaffolds after sintering. This study presents a low-melt-point bioactive glass (BG)-assisted sintering strategy to overcome the main limitations of direct ink writing (extrusion-based three-dimensional printing) and to produce high-strength calcium silicate (CSi) bioceramic scaffolds. The 1% BG-added CSi (CSi-BG1) scaffolds with rectangular pore morphology sintered at 1080 °C have a very small BG content, readily induce apatite formation, and show appreciable linear shrinkage (∼21%), which is consistent with the composite scaffolds with less or more BG contents sintered at either the same or a higher temperature. These CSi-BG1 scaffolds also possess a high elastic modulus (∼350 MPa) and appreciable compressive strength (∼48 MPa), and show significant strength enhancement after exposure to simulated body fluid-a performance markedly superior to those of pure CSi scaffolds. Particularly, the honeycomb-pore CSi-BG1 scaffolds show markedly higher compressive strength (∼88 MPa) than the scaffolds with rectangular, parallelogram, and Archimedean chord pore structures. It is suggested that this approach can potentially facilitate the translation of ceramic ink writing and BG-assisted sintering of bioceramic scaffold technologies to the in situ bone repair.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Biocompatible Materials / Tissue Scaffolds / Bioprinting / Glass Language: En Year: 2015 Type: Article

Full text: 1 Database: MEDLINE Main subject: Biocompatible Materials / Tissue Scaffolds / Bioprinting / Glass Language: En Year: 2015 Type: Article