Your browser doesn't support javascript.
loading
Cardiac Extracellular Vesicles in Normal and Infarcted Heart.
Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V.
Affiliation
  • Chistiakov DA; Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia. dimitry.chistiakov@lycos.com.
  • Orekhov AN; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia. a.h.opexob@gmail.com.
  • Bobryshev YV; Institute for Atherosclerosis Research, Skolkovo Innovative Center, 143025 Moscow, Russia. a.h.opexob@gmail.com.
Int J Mol Sci ; 17(1)2016 Jan 05.
Article in En | MEDLINE | ID: mdl-26742038
ABSTRACT
Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs), such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, such as hypoxia, inflammation or injury, cardiomyocytes increase secretion of EVs. In hypoxic conditions, cardiac EVs are enriched with angiogenic and prosurvival factors. In acute myocardial infarction (AMI), damaged cardiac muscle cells produce EVs with increased content of angiogenic, anti-apoptotic, mitogenic and growth factors in order to induce repair and healing of the infarcted myocardium. Exosomal microRNAs play a central role in cardiac regeneration. In AMI, circulating cardiac EVs abundantly contain cardiac-specific miRNAs that serve as indicators of cardiac damage and have a big diagnostic potential as AMI biomarkers. Cardioprotective and regenerative properties of exosomes derived from cardiac and non-cardiac stem/progenitor cells are very helpful to be used in cell-free cardiotherapy and regeneration of post-infarct myocardium.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Myocytes, Cardiac / Extracellular Vesicles / Myocardial Infarction / Myocardium Type of study: Diagnostic_studies Limits: Animals / Humans Language: En Year: 2016 Type: Article

Full text: 1 Database: MEDLINE Main subject: Myocytes, Cardiac / Extracellular Vesicles / Myocardial Infarction / Myocardium Type of study: Diagnostic_studies Limits: Animals / Humans Language: En Year: 2016 Type: Article