Your browser doesn't support javascript.
loading
Exposure to Corticosterone Affects Host Resistance, but Not Tolerance, to an Emerging Fungal Pathogen.
Murone, Julie; DeMarchi, Joseph A; Venesky, Matthew D.
Affiliation
  • Murone J; Department of Biology, Allegheny College, Meadville, Pennsylvania, United States of America.
  • DeMarchi JA; Department of Biology, Allegheny College, Meadville, Pennsylvania, United States of America.
  • Venesky MD; Department of Biology, Allegheny College, Meadville, Pennsylvania, United States of America.
PLoS One ; 11(9): e0163736, 2016.
Article in En | MEDLINE | ID: mdl-27690360
ABSTRACT
Host responses to pathogens include defenses that reduce infection burden (i.e., resistance) and traits that reduce the fitness consequences of an infection (i.e., tolerance). Resistance and tolerance are affected by an organism's physiological status. Corticosterone ("CORT") is a hormone that is associated with the regulation of many physiological processes, including metabolism and reproduction. Because of its role in the stress response, CORT is also considered the primary vertebrate stress hormone. When secreted at high levels, CORT is generally thought to be immunosuppressive. Despite the known association between stress and disease resistance in domesticated organisms, it is unclear whether these associations are ecologically and evolutionary relevant in wildlife species. We conducted a 3x3 fully crossed experiment in which we exposed American toads (Anaxyrus [Bufo] americanus) to one of three levels of exogenous CORT (no CORT, low CORT, or high CORT) and then to either low or high doses of the pathogenic chytrid fungus Batrachochytrium dendrobatidis ("Bd") or a sham exposure treatment. We assessed Bd infection levels and tested how CORT and Bd affected toad resistance, tolerance, and mortality. Exposure to the high CORT treatment significantly elevated CORT release in toads; however, there was no difference between toads given no CORT or low CORT. Exposure to CORT and Bd each increased toad mortality, but they did not interact to affect mortality. Toads that were exposed to CORT had higher Bd resistance than toads exposed to ethanol controls/low CORT, a pattern opposite that of most studies on domesticated animals. Exposure to CORT did not affect toad tolerance to Bd. Collectively, these results show that physiological stressors can alter a host's response to a pathogen, but that the outcome might not be straightforward. Future studies that inhibit CORT secretion are needed to better our understanding of the relationship between stress physiology and disease resistance and tolerance in wild vertebrates.