Your browser doesn't support javascript.
loading
Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.
Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A.
Affiliation
  • Fazzari M; Fondazione Ri.MED, 90133 Palermo, Italy.
  • Khoo NK; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261.
  • Woodcock SR; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261.
  • Jorkasky DK; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261.
  • Li L; Complexa Inc., Pittsburgh, PA 15203.
  • Schopfer FJ; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261.
  • Freeman BA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261 freerad@pitt.edu fjs2@pitt.edu.
J Lipid Res ; 58(2): 375-385, 2017 02.
Article in En | MEDLINE | ID: mdl-27913584
ABSTRACT
Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[14C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Oleic Acids / Adipose Tissue / Fatty Acids Limits: Animals Language: En Year: 2017 Type: Article

Full text: 1 Database: MEDLINE Main subject: Oleic Acids / Adipose Tissue / Fatty Acids Limits: Animals Language: En Year: 2017 Type: Article