Your browser doesn't support javascript.
loading
Attenuation of polyglutamine-induced toxicity by enhancement of mitochondrial OXPHOS in yeast and fly models of aging.
Ruetenik, Andrea L; Ocampo, Alejandro; Ruan, Kai; Zhu, Yi; Li, Chong; Zhai, R Grace; Barrientos, Antoni.
Affiliation
  • Ruetenik AL; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami
  • Ocampo A; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami
  • Ruan K; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
  • Zhu Y; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
  • Li C; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Human Genetics and Genomics Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
  • Zhai RG; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Molecular and Cellular Pharmacology Graduate Program, University of Miami Mi
  • Barrientos A; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami
Microb Cell ; 3(8): 338-351, 2016 Jul 26.
Article in En | MEDLINE | ID: mdl-28357370
Defects in mitochondrial biogenesis and function are common in many neurodegenerative disorders, including Huntington's disease (HD). We have previously shown that in yeast models of HD, enhancement of mitochondrial biogenesis through overexpression of Hap4, the catalytic subunit of the transcriptional complex that regulates mitochondrial gene expression, alleviates the growth arrest induced by expanded polyglutamine (polyQ) tract peptides in rapidly dividing cells. However, the mechanism through which HAP4 overexpression exerts this protection remains unclear. Furthermore, it remains unexplored whether HAP4 overexpression and increased respiratory function during growth can also protect against polyQ-induced toxicity during yeast chronological lifespan. Here, we show that in yeast, mitochondrial respiration and oxidative phosphorylation (OXPHOS) are essential for protection against the polyQ-induced growth defect by HAP4 overexpression. In addition, we show that not only increased HAP4 levels, but also alternative interventions, including calorie restriction, that result in enhanced mitochondrial biogenesis confer protection against polyQ toxicity during stationary phase. The data obtained in yeast models guided experiments in a fly model of HD, where we show that enhancement of mitochondrial biogenesis can also protect against neurodegeneration and behavioral deficits. Our results suggest that therapeutic interventions aiming at the enhancement of mitochondrial respiration and OXPHOS could reduce polyQ toxicity and delay disease onset.
Key words