Your browser doesn't support javascript.
loading
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.
Wang, Hao; Mann, Paul A; Xiao, Li; Gill, Charles; Galgoci, Andrew M; Howe, John A; Villafania, Artjohn; Barbieri, Christopher M; Malinverni, Juliana C; Sher, Xinwei; Mayhood, Todd; McCurry, Megan D; Murgolo, Nicholas; Flattery, Amy; Mack, Matthias; Roemer, Terry.
Affiliation
  • Wang H; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Mann PA; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Xiao L; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Gill C; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Galgoci AM; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Howe JA; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Villafania A; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Barbieri CM; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Malinverni JC; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Sher X; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Mayhood T; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • McCurry MD; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Murgolo N; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Flattery A; Merck Research Laboratories, Kenilworth, NJ 07033, USA.
  • Mack M; Department of Biotechnology, Institute for Technical Microbiology, Hochschule Mannheim, Mannheim 68163, Germany.
  • Roemer T; Merck Research Laboratories, Kenilworth, NJ 07033, USA. Electronic address: terry_roemer@merck.com.
Cell Chem Biol ; 24(5): 576-588.e6, 2017 May 18.
Article in En | MEDLINE | ID: mdl-28434876
ABSTRACT
Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Pyrimidines / Riboflavin / Staphylococcus aureus / Riboswitch / Flavin Mononucleotide / Homeostasis Type of study: Prognostic_studies Limits: Animals Language: En Year: 2017 Type: Article

Full text: 1 Database: MEDLINE Main subject: Pyrimidines / Riboflavin / Staphylococcus aureus / Riboswitch / Flavin Mononucleotide / Homeostasis Type of study: Prognostic_studies Limits: Animals Language: En Year: 2017 Type: Article