Long-lived force patterns and deformation waves at repulsive epithelial boundaries.
Nat Mater
; 16(10): 1029-1037, 2017 10.
Article
in En
| MEDLINE
| ID: mdl-28892054
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
Full text:
1
Database:
MEDLINE
Main subject:
Stress, Physiological
/
Biological Clocks
/
Receptor, EphB2
/
Ephrin-B1
/
Epithelial Cells
/
Extracellular Matrix
Limits:
Animals
Language:
En
Year:
2017
Type:
Article